已知:如圖,正方形ABCD中,點(diǎn)E是BA延長線上一點(diǎn),連接DE,點(diǎn)F在DE上且DF=DC,DG⊥CF于G. DH平分∠ADE交CF于點(diǎn)H,連接BH.

(1)若DG=2,求DH的長;
(2)求證:BH+DH=CH.
(1) (2)證明DM=BH,DM+DH=CH所以BH+DH=CH

試題分析:(1)∵DG⊥CF且DF=CD
∴∠FDG=∠FDC 
∵DH平分∠ADE
∴∠FDH=∠ADF  2分
∴∠HDG=∠FDG-∠FDH=∠FDC-∠ADF
=(∠FDC-∠ADF)=∠ADC=45° 
∴△DGH為等腰直角三角形
∵DG=2,
∴DH=  .
(2)過點(diǎn)C作CM⊥CH, 交HD延長線于點(diǎn)M

∵∠1+∠DCH=∠2+∠DCH=900
∴∠1=∠2
又△DGH為等腰直角三角形
∴△MCH為等腰直角三角形
∴MC=HC
又∵四邊形ABCD為正方形
∴CD=CB
∴△MCD≌△HCB       
∴DM=BH
又∵△MCH為等腰直角三角形
∴DM+DH=CH
∴BH+DH=CH    
點(diǎn)評:本題考查角平分線,全等三角形,解本題的關(guān)鍵是掌握角平分線的性質(zhì),熟悉全等三角形的判定方法,會(huì)證明三角形全等
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

寫出下列命題的已知、求證,并完成證明過程.

命題:如果平行四邊形的一條對角線平分它的一個(gè)內(nèi)角,那么這個(gè)平行四邊形是菱形.
已知:如圖,                
求證:                  
證明:                             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用平行四邊形的定義和課本上的三個(gè)定理可以判斷一個(gè)四邊形是平行四邊形,請?zhí)剿鞑懗鲆粋(gè)與它們不同的平行四邊形的判定方法:                                   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在四邊形ABCD中,E、F分別是AB、AD的中點(diǎn),若EF=2,BC=5,CD=3,則tanC等于     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在一塊邊長為10米的正方形草坪上修了橫豎各兩條寬都為1.5米的長方形小路(圖中陰影部分)將草坪分隔成如圖所示的圖案,則圖中未被小路覆蓋的草坪的總面積為_____________平方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F.試判斷AF與CE是否相等,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在□ABCD中,AE⊥BC于E,AE=EB=EC=,且是一元二次方程的根,則□ABCD的周長為( )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列四個(gè)命題:①一組對邊平行,另一組對邊相等的四邊形是等腰梯形;②對角線互相垂直且相等的四邊形是正方形;③順次連接菱形各邊中點(diǎn)所得四邊形是矩形;④等腰三角形腰上的高與中線重合。其中真命題有
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,E為正方形CD邊上一點(diǎn),連接BE,過點(diǎn)AAFBE,交CD的延長線于點(diǎn)F 的平分線分別交AF、AD于點(diǎn)G、H

(1)若,求的長度;
(2)證明:

查看答案和解析>>

同步練習(xí)冊答案