如圖,在△ABC中,已知AD平分∠BAC,過AD上一點(diǎn)P作EF⊥AD,交AB于E、交AC于F,交BC延長(zhǎng)線于M,則有正確結(jié)論:∠M=
12
(∠ACB-∠B).請(qǐng)說明理由.精英家教網(wǎng)
分析:首先由三角形的內(nèi)角和定理證出∠AEF=∠AFE=∠CFM,由三角形的外角性質(zhì)得到∠AEF=∠B+∠M,∠MFC=∠ACB-∠M,代入即可得出答案.
解答:證明:∵EF⊥AD,AD平分∠BAC,
∴∠1=∠2,∠APE=∠APF=90°,
又∵∠AEF=180°-∠1-∠APE,∠AFE=180°-∠2-∠APF,
∴∠AEF=∠AFE,
∵∠CFM=∠AFE,
∴∠AEF=∠AFE=∠CFM,
∵∠AEF=∠B+∠M,∠MFC=∠ACB-∠M,
∴∠B+∠M=∠ACB-∠M,
即:∠M=
1
2
(∠ACB-∠B).
點(diǎn)評(píng):本題主要考查了三角形的內(nèi)角和定理,等腰三角形的性質(zhì),三角形的外角性質(zhì)等知識(shí)點(diǎn),綜合運(yùn)用性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案