【題目】如圖,PA、PBCD分別切⊙O于點A、BE,CD分別交PA、PB于點C、D.下列關系:①PA=PB;②∠ACO=DCO;③∠BOE和∠BDE互補;④PCD的周長是線段PB長度的2倍.則其中說法正確的有

A. 1個 B. 2個 C. 3個 D. 4個

【答案】D

【解析】試題分析:根據(jù)切線長定理可知PA=PB,故①正確;同理可知CA=CE,可知CO為∠ACE的角平分線,所以∠ACO=∠DCO,故②正確;同理可知DE=BD,由切線的性質可知∠OBD=∠OED=90°,可根據(jù)四邊形的內角和為360°知∠BOE+∠BDE=180°,即∠BOE和∠BDE互補,故③正確;根據(jù)切線長定理可得CD=CA,BD=DE,而△PCD的周長=PC+CD+PD=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=2PB,故④正確.

故選:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(4a+3a2﹣3+3a3)﹣(﹣a+4a3),其中a=﹣2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求﹣(5a+b﹣ab)﹣(2ab﹣2a﹣4b)+(2b﹣2a﹣3ab) 的值.(其中a﹣b=5,ab=﹣3.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若﹣2x2my3與2x4yn的和是單項式,那么m﹣n等于( )
A.0
B.1
C.﹣1
D.﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明對自己所在班級的50名學生平均每周參加課外活動的時間進行了調查,由調查結果繪制了頻數(shù)分布直方圖,根據(jù)圖中信息回答下列問題:

1)求m的值;

2)從參加課外活動時間在610小時的5名學生(其中6~8小時的3人分別用8~10分別用表示)中隨機選取2人,請你用列表或畫樹狀圖的方法,求其中至少有1人課外活動時間在810小時的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交點為C,則圖中全等三角形共有(

A.2對
B.3對
C.4對
D.5對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果a、b互為倒數(shù),c、d互為相反數(shù),且|m|=1,則代數(shù)式2ab﹣(c+d)+m=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=(x+2)2+1的頂點坐標是( )
A.(2,1)
B.(2,﹣1)
C.(﹣2,1)
D.(﹣2,﹣1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個多邊形的各邊都相等,且各內角也都相等,那么這個多邊形就叫做正多邊形.如圖,就是一組正多邊形,觀察每個正多邊形中∠α的變化情況:

(1)將下面的表格補充完整:
(2)根據(jù)規(guī)律,是否存在一個正多邊形,其中的∠α=21°?若存在,請求出n的值,若不存在,請說明理由.

正多邊形邊數(shù)

3

4

5

6

n

∠α的度數(shù)

60°

查看答案和解析>>

同步練習冊答案