如圖,一只貓頭鷹蹲在一棵樹AC的B(點B在AC上)處,發(fā)現(xiàn)一只老鼠躲進短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點觀測F點的俯角為53°,老鼠躲藏處M(點M在DE上)距D點3米.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?
解:(1)能看到,理由如下:
由題意得,∠DFG=90°﹣53°=37°,則=tan∠DFG。
∵DF=4米,∴DG=4×tan37°=4×0.75=3(米)。
∵老鼠躲藏處M(點M在DE上)距D點3米,∴貓頭鷹能看到這只老鼠。
(2)由(1)得,AG=AD+DG=2.7+3=5.7(米),
=sin∠C=sin37°,則CG=(米)。
答:要捕捉到這只老鼠,貓頭鷹至少要飛9.5米。

試題分析:(1)根據(jù)貓頭鷹從C點觀測F點的俯角為53°,可知∠DFG=90°﹣53°=37°,在△DFG中,已知DF的長度,求出DG的長度,若DG>3,則看不見老鼠,若DG<3,則可以看見老鼠。
(2)根據(jù)(1)求出的DG長度,求出AG的長度,然后在Rt△CAG中,根據(jù)=sin∠C=sin37°,即可求出CG的長度。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在一筆直的海岸線l上有A,B兩個觀測站,A在B的正東方向,AB=2(單位:km).有一艘小船在點P處,從A測得小船在北偏西600的方向,從B測得小船在北偏東450的方向.

(1)求點P到海岸線l的距離;
(2)小船從點P處沿射線AP的方向航行一段時間后,到達點C處.此時,從B測得小船在北偏西150的方向.求點C與點B之間的距離.
(上述2小題的結(jié)果都保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:計算題

計算:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

sin30°的值為     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點B1是面積為1的等邊△OBA的兩條中線的交點,以O(shè)B1為一邊,構(gòu)造等邊△OB1A1(點O,B1,A1按逆時針方向排列),稱為第一次構(gòu)造;點B2是△OBA的兩條中線的交點,再以O(shè)B2為一邊,構(gòu)造等邊△OB2A2(點O,B2,A2按逆時針方向排列),稱為第二次構(gòu)造;以此類推,當?shù)趎次構(gòu)造出的等邊△OBnAn的邊OAn與等邊△OBA的邊OB第一次重合時,構(gòu)造停止.則構(gòu)造出的最后一個三角形的面積是    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,∠A=450,∠B=300,CD⊥AB,垂足為D,CD=1,則AB的長為【   】
A.2  B.  C.  D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:計算題

計算:,(說明:本題不能使用計算器)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:計算題

(2013年四川廣安5分)計算:

查看答案和解析>>

同步練習冊答案