我們把依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫做中點(diǎn)四邊形. 如圖,

E、F、G、H分別是四邊形ABCD各邊的中點(diǎn).

(1) 求證:四邊形EFGH是平行四邊形;

(2) 如果我們對(duì)四邊形ABCD的對(duì)角線AC與BD添加一定的條件, 則可使四邊形EFGH成為特殊的平行四邊形, 請(qǐng)你經(jīng)過(guò)探究后直接填寫(xiě)答案:

① 當(dāng)AC=BD時(shí), 四邊形EFGH為_(kāi)_________;

② 當(dāng)AC____BD時(shí), 四邊形EFGH為矩形;

③ 當(dāng)AC=BD且AC⊥BD時(shí), 四邊形EFGH為_(kāi)_________.

 

【答案】

(1)連接AC、BD,

因?yàn)镠、G,分別為AD、DC的中點(diǎn),

所以HG∥AC,

同理EF∥AC,

所以HG∥EF;

同理可知HE∥GF.

于是四邊形EFGH是平行四邊形.

(2)①由于對(duì)角線相等,

因?yàn)镠,G,分別為AD、DC的中點(diǎn),

所以HG=AC,

同理EF=AC,

所以HG=EF;

同理可知HE=BD,

GF=BD.

又因?yàn)锳C=BD

所以HE=EF=FG=GH.

又因?yàn)槭撬倪呅蜤FGH是平行四邊形.

所以四邊形EFGH為菱形.

②由于四邊形EFGH是平行四邊形.

當(dāng)AC⊥BD時(shí),

HE⊥EF,

故四邊形EFGH為矩形;

③由于四邊形EFGH是平行四邊形.

當(dāng)AC⊥BD時(shí),

HE⊥EF,

故四邊形EFGH為矩形;

AC=BD時(shí),

四邊形EFGH為正方形.

【解析】先根據(jù)中位線定理證明:順次連接四邊形各邊中點(diǎn)所得四邊形是平行四邊形;順次連接對(duì)角線互相垂直的四邊形各邊中點(diǎn)所得四邊形是矩形;順次連接對(duì)角線相等的四邊形各邊中點(diǎn)所得四邊形是菱形;順次連接對(duì)角線相等且互相垂直的四邊形各邊中點(diǎn)所得四邊形是正方形.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

等腰三角形是我們熟悉的圖形之一,下面介紹一種等分等邊三角形面積的方法:如圖(1),在△ABC中,AB=AC,把底邊BC分成m等份,連接頂點(diǎn)A和底邊BC各等分點(diǎn)的線段,即可把這個(gè)三角形的面積m等分.
問(wèn)題的提出:任意給定一個(gè)正n邊形,你能把它的面積m等分嗎?
探究與發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們先從簡(jiǎn)單問(wèn)題入手:怎樣從正三角形的中一心(正多邊形的各對(duì)稱軸的交點(diǎn),又稱為正多邊形的中心)引線段,才能將這個(gè)正三角形的面積m等分?
如果要把正三角形的面積四等分,我們可以先連接正三角形的中心和各頂點(diǎn)(如圖(2),這些線段將這個(gè)正三角形分成了三個(gè)全等的等腰三角形);再把所得的每個(gè)等腰三角形的底邊四等分,連接中心和各邊等分點(diǎn)(如圖(3),這些線段把這個(gè)正三角形分成了12個(gè)面積相等的小三角形);最后,依次把相鄰的三個(gè)小三角形拼合在一起(如圖(4)).這樣就把正三角形的面積四等分.

(1)實(shí)驗(yàn)與驗(yàn)證:依照上述方法,利用刻度尺,在圖(5)中畫(huà)出一種將正三角形的面積五等分的簡(jiǎn)單示意圖;
(2)猜想與證明:怎樣從正三角形的中心引線段,才能將這個(gè)正三角形的面積m等分?敘述你的分法并說(shuō)明理由;
(3)拓展與延伸:怎樣從正方形的中心引線段,才能將這個(gè)正方形的面積m等分?(敘述方法即可,不需說(shuō)明理由)
(4)向題解決:怎樣從正n邊形的中心引線段,才能將這個(gè)正n邊形的面積m等分?(敘述分法即可,不需說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

等腰三角形是我們熟悉的圖形之一,下面介紹一種等分等邊三角形面積的方法:如圖(1),在△ABC中,AB=AC,把底邊BC分成m等份,連接頂點(diǎn)A和底邊BC各等分點(diǎn)的線段,即可把這個(gè)三角形的面積m等分.
問(wèn)題的提出:任意給定一個(gè)正n邊形,你能把它的面積m等分嗎?
探究與發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們先從簡(jiǎn)單問(wèn)題入手:怎樣從正三角形的中一心(正多邊形的各對(duì)稱軸的交點(diǎn),又稱為正多邊形的中心)引線段,才能將這個(gè)正三角形的面積m等分?
如果要把正三角形的面積四等分,我們可以先連接正三角形的中心和各頂點(diǎn)(如圖(2),這些線段將這個(gè)正三角形分成了三個(gè)全等的等腰三角形);再把所得的每個(gè)等腰三角形的底邊四等分,連接中心和各邊等分點(diǎn)(如圖(3),這些線段把這個(gè)正三角形分成了12個(gè)面積相等的小三角形);最后,依次把相鄰的三個(gè)小三角形拼合在一起(如圖(4)).這樣就把正三角形的面積四等分.

(1)實(shí)驗(yàn)與驗(yàn)證:依照上述方法,利用刻度尺,在圖(5)中畫(huà)出一種將正三角形的面積五等分的簡(jiǎn)單示意圖;
(2)猜想與證明:怎樣從正三角形的中心引線段,才能將這個(gè)正三角形的面積m等分?敘述你的分法并說(shuō)明理由;
(3)拓展與延伸:怎樣從正方形的中心引線段,才能將這個(gè)正方形的面積m等分?(敘述方法即可,不需說(shuō)明理由)
(4)向題解決:怎樣從正n邊形的中心引線段,才能將這個(gè)正n邊形的面積m等分?(敘述分法即可,不需說(shuō)明理由).

查看答案和解析>>

同步練習(xí)冊(cè)答案