如圖,已知函數(shù)y=2x和函數(shù)的圖象交于A、B兩點(diǎn),過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E,若△AOE的面積為4,P是坐標(biāo)平面上的點(diǎn),且以點(diǎn)B、O、E、P為頂點(diǎn)的四邊形是平行四邊形,則滿足條件的P點(diǎn)坐標(biāo)是 .
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某校組織了一次向玉樹(shù)地震災(zāi)區(qū)學(xué)校的捐款活動(dòng),其中初三(1)班50名學(xué)生捐款情況如下表所示,則捐款數(shù)據(jù)中5(元)的頻數(shù)與頻率分別是__________.
捐款(元) | 1 | 4 | 5 | 7 | 8 | 9 | 10 | 12 | 16 | 50 |
人數(shù) | 1 | 3 | 6 | 5 | 5 | 3 | 15 | 7 | 4 | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,四邊形ABCD是邊長(zhǎng)為1 的正方形,四邊形EFGH是邊長(zhǎng)為2的正方形,點(diǎn)D與點(diǎn)F重合,點(diǎn)B,D(F),H在同一條直線上,將正方形ABCD沿F→H方向平移至點(diǎn)B與點(diǎn)H重合時(shí)停止,設(shè)點(diǎn)D、F之間的距離為x,正方形ABCD與正方形EFGH重疊部分的面積為y,則能大致反映y與 x之間函數(shù)關(guān)系的圖象是( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列命題正確的是 ( )
A.三點(diǎn)可以確定一個(gè)圓; B.以定點(diǎn)為圓心, 定長(zhǎng)為半徑可確定一個(gè)圓;
C.頂點(diǎn)在圓上的三角形叫圓的外接三角形; D.等腰三角形的外心一定在這個(gè)三角形內(nèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
拋物線上部分點(diǎn)的橫坐標(biāo),縱坐標(biāo)的對(duì)應(yīng)值如下表:
| … |
|
| 0 | 1 | 2 | … |
| … | 0 | 4 | 6 | 6 | 4 | … |
由上表可知,下列說(shuō)法正確的個(gè)數(shù)是 ( )
①拋物線與軸的一個(gè)交點(diǎn)為 ②拋物線與軸的交點(diǎn)為
③拋物線的對(duì)稱(chēng)軸是: ④在對(duì)稱(chēng)軸左側(cè)隨增大而增大
A.1 。拢2 C.3 。模4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知反比例函數(shù)與一次函數(shù)的圖象在第一象限相交于點(diǎn)A(1,)
(1) 試確定這兩個(gè)函數(shù)的表達(dá)式;
(2)求出這兩個(gè)函數(shù)圖像的另一個(gè)交點(diǎn)B的坐標(biāo),并根據(jù)圖象
寫(xiě)出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,平面直角坐標(biāo)系中,每個(gè)小正方形邊長(zhǎng)都是1.
(1)按要求作圖:
|
②將△A1B1C1向右平移7個(gè)單位得到 △A2B2C2.
(2)回答下列問(wèn)題:
①△A2B2C2中頂點(diǎn)B2坐標(biāo)為 .
②若P(a,b)為△ABC邊上一點(diǎn),則按照(1)中①、②作圖,點(diǎn)P對(duì)應(yīng)的點(diǎn)P2的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com