如圖,在RtABC中,ACB=90°,AC=6cm,BC=8cm.點(diǎn)D、EF分別是邊AB,BC,AC的中點(diǎn),連接DE,DF,動(dòng)點(diǎn)P,Q分別從點(diǎn)A、B同時(shí)出發(fā),運(yùn)動(dòng)速度均為1cm/s,點(diǎn)P沿AFD的方向運(yùn)動(dòng)到點(diǎn)D停止;點(diǎn)Q沿BC的方向運(yùn)動(dòng),當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).在運(yùn)動(dòng)過程中,過點(diǎn)QBC的垂線交AB于點(diǎn)M,以點(diǎn)P,MQ為頂點(diǎn)作平行四邊形PMQN.設(shè)平行四邊形邊形PMQN與矩形FDEC重疊部分的面積為ycm2)(這里規(guī)定線段是面積為0有幾何圖形),點(diǎn)P運(yùn)動(dòng)的時(shí)間為xs


1)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)F時(shí),CQ= ???????? cm;
2)在點(diǎn)P從點(diǎn)F運(yùn)動(dòng)到點(diǎn)D的過程中,某一時(shí)刻,點(diǎn)P落在MQ上,求此時(shí)BQ的長(zhǎng)度;
3)當(dāng)點(diǎn)P在線段FD上運(yùn)動(dòng)時(shí),求yx之間的函數(shù)關(guān)系式.

 

【答案】

15?? 2cm?? 3)當(dāng)3≤x4時(shí),y=-x2+x

當(dāng)4≤x時(shí),y=-6x+33

當(dāng)≤x≤7時(shí),y=6x-33

【解析】

解:(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)F時(shí),
FAC的中點(diǎn),AC=6cm
AF=FC=3cm,
PQ的運(yùn)動(dòng)速度都是1cm/s,
BQ=AF=3cm,
CQ=8cm-3cm=5cm,
故答案為:5
2)設(shè)在點(diǎn)P從點(diǎn)F運(yùn)動(dòng)到點(diǎn)D的過程中,點(diǎn)P落在MQ上,如圖1,


t+t-3=8,
t=,
BQ的長(zhǎng)度為×1=cm);

3D、EF分別是AB、BCAC的中點(diǎn),
DE=AC=×6=3,
DF=BC=×8=4,
MQBC,
∴∠BQM=C=90°,
∵∠QBM=CBA,
∴△MBQ∽△ABC,
,
,
MQ=x
分為三種情況:當(dāng)3≤x4時(shí),重疊部分圖形為平行四邊形,如圖2,

y=PN•PD
=x7-x
y=-x2+x;
當(dāng)4≤x時(shí),重疊部分為矩形,如圖3,

y=3[8-X-X-3))]
y=-6x+33
當(dāng)≤x≤7時(shí),重疊部分圖形為矩形,如圖4,

y=3[x-3-8-x]
y=6x-33

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案