【答案】
分析:(1)當(dāng)點(diǎn)C在線段PO上時(shí)(如圖一),有PO-OC=PC=15,且PO-2OC=9,解方程組可求PO,從而確定點(diǎn)P的坐標(biāo)和AP的長(zhǎng),當(dāng)點(diǎn)C在線段AO上時(shí)(如圖二),有PO+OC=PC=15,且PO-2OC=9,解方程組可求PO,從而確定點(diǎn)P的坐標(biāo)和AP的長(zhǎng);
(2)根據(jù)(1)的兩種情況,連接PD,分別在Rt△APD中,由勾股定理求AD,由△ABO∽△APD,利用相似比求OB,確定B點(diǎn)坐標(biāo),根據(jù)A、B兩點(diǎn)坐標(biāo)求直線AB的解析式.
解答:解:(1)當(dāng)點(diǎn)C在線段PO上時(shí),(如圖一),
∵⊙P的半徑為9,∴PC=15,∴PO-OC=15,
∵PO-2OC=9,∴PO=21,OC=6,
∴點(diǎn)P(-21,0)…(1分)
∵點(diǎn)A(4,0),∴AP=25.…(1分)
當(dāng)點(diǎn)C在線段AO上時(shí)(如圖二),
∵⊙P的半徑為9,∴PC=15,∴PO+OC=15,
∵PO-2OC=9,∴PO=13,OC=2,
∴點(diǎn)P(-13,0)…(1分)
∵點(diǎn)A(4,0),∴AP=17.…(1分)
(2)當(dāng)點(diǎn)C在線段PO上時(shí),連接PD(如圖一),
∵AB切⊙P于點(diǎn)D,∴PD⊥AD,PD=15.
∵AP=25,∴AD
2+PD
2=AP
2,∴AD=20. …(1分)
∵△ABO∽△APD,∴AO:AD=OB:PD,即4:20=OB:15,∴OB=3,…(1分)
∴可以求得切線AB的函數(shù)解析式為y=-
x+3. …(2分)
當(dāng)點(diǎn)C在線段AO上時(shí),連接PD(如圖二),
∵AB切⊙P于點(diǎn)D,∴PD⊥AD,PD=15.
∵AP=17,∴AD
2+PD
2=AP
2,∴AD=8.…(1分)
∵△ABO∽△APD,
∵△ABO∽△APD,∴AO:AD=OB:PD,即4:8=OB:15,∴OB=
,…(1分)
∴可以求得切線AB的函數(shù)解析式為y=-
x+
. …(2分)
點(diǎn)評(píng):本題考查了一次函數(shù)的綜合運(yùn)用.關(guān)鍵是點(diǎn)C的位置分類,由勾股定理,相似三角形求B點(diǎn)坐標(biāo),確定直線AB的解析式.