正方形A1B1C1O,A2B2C2C1,A3B3C3C2,按如圖所示的方式放置,點(diǎn)A1,A2,A3,…在直線y=kx+b(k>0),點(diǎn)C1,C2,C3,…在x軸上,已知點(diǎn)B1(1,1),B2(3,2),則B5的坐標(biāo)是______.
∵點(diǎn)B1(1,1),B2(3,2),
∴A1(0,1)A2(1,2)A3(3,4),
∴直線y=kx+b(k>0)為y=x+1,
∴Bn的橫坐標(biāo)為An+1的橫坐標(biāo),縱坐標(biāo)為An的縱坐標(biāo)
又An的橫坐標(biāo)數(shù)列為An=2n-1-1,所以縱坐標(biāo)為2n-1,
∴Bn的坐標(biāo)為[A(n+1)的橫坐標(biāo),An的縱坐標(biāo)]=(2n-1,2n-1).
所以B5的坐標(biāo)是(25-1,24),即(31,16).
故填空答案:(31,16).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)y=kx+b的圖象可以看作是由直線y=2x向上平移6個單位長度得到的,且y=kx+b與兩坐標(biāo)軸圍成的三角形面積被一正比例函數(shù)分成面積的比為1:2的兩部分,求這個正比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某中學(xué)九年級甲、乙兩班同學(xué)商定舉行一次遠(yuǎn)足活動,A、B兩地相離10千米,甲班從A地出發(fā)勻速步行到B地,乙班從B地出發(fā)勻速步行到A地,兩班同學(xué)各自到達(dá)目的地后都就地活動.兩班同時出發(fā),相向而行.設(shè)步行時間為x小時,甲、乙兩班離A地的距離分別為y1千米、y2千米,y1、y2與x的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖象解答下列問題:
(1)分別求出y1、y2與x的函數(shù)關(guān)系式;
(2)求甲、乙兩班學(xué)生出發(fā)后,幾小時相遇?
(3)求甲班同學(xué)去遠(yuǎn)足的過程中,步行多少時間后兩班同學(xué)之距為9千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,若直線PA的解析式為y=
2
3
x+b,且點(diǎn)P(4,2),PA=PB,則點(diǎn)B的坐標(biāo)是( 。
A.(5,0)B.(6,0)C.(7,0)D.(8,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一個物體沿一個斜坡下滑,它們速度y(米/秒)與其下滑時間x(秒)的關(guān)系如圖所示.
(1)寫出y與x之間的關(guān)系式;
(2)下滑4秒時物體的速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某中學(xué)九年級甲、乙兩班商定舉行一次遠(yuǎn)足活動,A、B兩地相距10千米,甲班從A地出發(fā)勻速步行到B地,乙班從B地出發(fā)勻速步行到A地.兩班同時出發(fā),相向而行.設(shè)步行時間為x小時,甲、乙兩班離A地的距離分別為y1、y2千米,y1、y2與x的函數(shù)關(guān)系圖象如圖所示.根據(jù)圖象解答下列問題:
(1)直接寫出,y1、y2與x的函數(shù)關(guān)系式;
(2)求甲、乙兩班學(xué)生出發(fā)后,幾小時相遇?相遇時乙班離A地多少千米?
(3)甲、乙兩班首次相距4千米時所用時間是多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某蒜薹生產(chǎn)基地喜獲豐收,收獲蒜薹200噸.經(jīng)市場調(diào)查,可采用批發(fā)、零售、冷庫儲藏后銷售三種方式,并按這三種方式銷售,計(jì)劃平均每噸的售價及成本如下表:
銷售方式批發(fā)零售儲藏后銷售
售價(元/噸)300045005500
成本(元/噸)70010001200
若經(jīng)過一段時間,蒜薹按計(jì)劃全部售出獲得的總利潤為y(元),蒜薹零售x(噸),且零售量是批發(fā)量的
1
3

(1)求y與x之間的函數(shù)關(guān)系式;
(2)由于受條件限制,經(jīng)冷庫儲藏售出的蒜薹最多80噸,求該生產(chǎn)基地按計(jì)劃全部售完蒜薹獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

表示氣溫,有的地方用攝氏溫度,有的地方用華氏溫度.已知攝氏溫度與華氏溫度之間存在著某種函數(shù)關(guān)系,下表列出了一些攝氏溫度x(℃)及其所對應(yīng)的華氏溫度y(℉).
x(℃)-100102030
y(℉)1432506886
(1)以攝氏溫度為橫坐標(biāo),以華氏溫度為縱坐標(biāo),將表格中的數(shù)據(jù)描點(diǎn)連線;
(2)試確定y與x之間的函數(shù)關(guān)系式;
(3)某天,連云港的最高氣溫是8℃,悉尼的最高氣溫是91℉,問這一天悉尼的最高氣溫比連云港的最高氣溫高多少攝氏度(結(jié)果保留整數(shù))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

義烏市某飾品廠生產(chǎn)出一款新產(chǎn)品,上市20天全部銷售完,該廠銷售部對銷售情況進(jìn)行跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:件)與上市時間x(單位:天)的函數(shù)關(guān)系如圖1所示,飾品價格z(單位:元/件)與上市時間x(單位:天)的函數(shù)關(guān)系如圖2所示.

(1)觀察圖象,直接寫出日銷售量的最大值;
(2)求該廠飾品的價格z與上市時間x的函數(shù)解析式;
(3)試比較第8天與第12天的銷售金額哪天多?

查看答案和解析>>

同步練習(xí)冊答案