如圖,在△ABC中,∠ACB=90°,D是AB的中點,過點B作∠CBE=∠A,BE與CD相交于點F,與AC相交于點E,
(1)求證:BE⊥CD;
(2)如果BE=CD,那么線段AC與BC之間具有怎樣的數(shù)量關系?并證明你所得到的結論.

【答案】分析:(1)根據(jù)角之間的等量關系及中點的特點即可得出答案;
(2)根據(jù)題意易證△BCE∽△ACB,根據(jù)相似三角形比例關系即可得出結論.
解答:解:(1)∵∠CBE=∠A,
∴∠CBE+∠EBA=∠A+∠EBA,即:∠CBA=∠BEC,
∵∠ACB=90°,D是AB的中點,
∴CD=BD,
∴∠CBA=∠DCB,
∴∠DCB=∠BEC,
∵∠DCB+∠ACD=90°,
∴∠BEC+∠ACD=90°,
∴BE⊥CD;

(2)線段AC與BC之間的數(shù)量關系是(AC=2BC),
∵∠CBE=∠A,∠BCE=∠ACB,
∴△BCE∽△ACB,

∵BE=CD,

點評:本題主要考查了直角三角形斜邊中線的性質及相似三角形的證明及性質,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案