【題目】已知:如圖1,等邊△ABC內(nèi)接于⊙O,點(diǎn)P是⌒AB上的任意一點(diǎn),連結(jié)PA,PB,PC.點(diǎn)D是PC上一點(diǎn),連結(jié)DB.
(1) 若PD=PB,求∠PBD的度數(shù);
(2)在(1)的條件下,小麗探究的值,她認(rèn)為只要弄清PA+PB與PC的關(guān)系即可,她的思路可以用以下框圖表示:
根據(jù)小麗的思路,請(qǐng)你完整地書寫本題的探究過程,并求出的值.
(3)如圖2,把條件“等邊△ABC”改為“正方形ABCD”,其余條件不變,判斷是定值嗎?若是,請(qǐng)求出這個(gè)值;若不是,請(qǐng)說明理由.
【答案】(1)證明見解析;(2);(3)
【解析】
(1)利用等邊三角形的性質(zhì)與判定即可得證;
(2)先通過“邊角邊”證明△PBA≌△DBC,則PA=CD,即PC=CD+PD=PA+PB,然后整理求解即可;
(3)根據(jù)正方形的性質(zhì)通過“邊角邊”證明△PAB≌△HAD,得PB=DH,即PD=DH+PH=PB+PA,同理可證: PC=PA+PB,則可得PC+PD=(1+)(PA+PB),然后進(jìn)行整理計(jì)算即可.
解:(1)∵△ABC是等邊三角形,
∴BA=BC,∠BAC=∠ABC=60°,
∵∠BPD=∠CAB=60°,PD=PB,
∴△PDB是等邊三角形,
∴∠PBD=∠ABC=60°.
(2)∵∠PBD=∠ABC=60°
∴∠PBA=∠DBC,
∵BP=BD,BA=BC,
∴△PBA≌△DBC(SAS),
∴PA=CD,
∴PC=CD+PD=PA+PB.
∴;
(3)如圖2中,連接OA,OD,作AH⊥AP交PD于點(diǎn)H,
∵四邊形ABCD是正方形,
∴AD=AB,∠DAB=90°,∠AOD=90°,
∵∠APD=∠AOD=45°,AH⊥PA,
∴∠PAH=90°,∠AHP=∠APH=45°,
∴AH=AP,
∵∠PAH=∠BAD=90°,
∴∠PAB=∠HAD,
∴△PAB≌△HAD(SAS),
∴PB=DH,
∴PD=DH+PH=PB+PA,
同理可證:PC=PA+PB,
∴PC+PD=(1+)(PA+PB),
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①,②是曉東同學(xué)在進(jìn)行“居民樓高度、樓間距對(duì)住戶采光影響問題”的研究時(shí)畫的兩個(gè)示意圖.請(qǐng)你閱讀相關(guān)文字,解答下面的問題.
(1)圖①是太陽光線與地面所成角度的示意圖.冬至日正午時(shí)刻,太陽光線直射在南回歸線(南緯23.5)B地上.在地處北緯36.5的A地,太陽光線與地面水平線l所成的角為,試借助圖①,求的度數(shù).
(2)圖②是乙樓高度、樓間距對(duì)甲樓采光影響的示意圖.甲樓地處A地,其二層住戶的南面窗戶下沿距地面3.4米.現(xiàn)要在甲樓正南面建一幢高度為22.3米的乙樓,為不影響甲樓二層住戶(一層為車庫)的采光,兩樓之間的距離至少應(yīng)為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,A是反比例函數(shù)y=(x>0)圖象上一點(diǎn),B是y軸正半軸上一點(diǎn),以OA,AB為鄰邊作ABCO.若點(diǎn)C及BC中點(diǎn)D都在反比例函數(shù)y=(k<0,x<0)圖象上,則k的值為( 。
A. ﹣3B. ﹣4C. ﹣6D. ﹣8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著手機(jī)普及率的提高,有些人開始過分依賴手機(jī),一天中使用手機(jī)時(shí)間過長(zhǎng)而形成了“手機(jī)癮”,某校學(xué)生會(huì)為了了解本校初三年級(jí)的手機(jī)使用情況,隨機(jī)調(diào)查了部分學(xué)生的手機(jī)使用時(shí)間,將調(diào)查結(jié)果分成五類:
A、基本不用;B、平均每天使用1~2h;C、平均每天使用2~4h;D、平均每天使用4~6h;E、平均每天使用超過6h,并根據(jù)統(tǒng)計(jì)結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)學(xué)生會(huì)一共調(diào)查了多少名學(xué)生?
(2)此次調(diào)查的學(xué)生中屬于E類的學(xué)生有 人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若一天中手機(jī)使用時(shí)間超過6h,則患有嚴(yán)重的“手機(jī)癮”,該校初三學(xué)生共有900人,請(qǐng)估計(jì)該校初三年級(jí)中患有嚴(yán)重的“手機(jī)癮”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),B在x軸上,四邊形OACB為平行四邊形,且
∠AOB=60°,反比例函數(shù) (k>0)在第一象限內(nèi)過點(diǎn)A,且與BC交于點(diǎn)F。當(dāng)F為BC的中點(diǎn),且S△AOF=12 時(shí),OA的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校圍繞著“你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))”的問題,對(duì)在校學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問題:
(1)該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?
(2)本次抽樣調(diào)查中,最喜歡足球活動(dòng)的有多少人?占被調(diào)查人數(shù)的百分比是多少?
(3)若該校九年級(jí)共有400名學(xué)生,圖2是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡籃球活動(dòng)的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“宜居襄陽”是我們的共同愿景,空氣質(zhì)量備受人們關(guān)注.我市某空氣質(zhì)量監(jiān)測(cè)站點(diǎn)檢測(cè)了該區(qū)域每天的空氣質(zhì)量情況,統(tǒng)計(jì)了2013年1月份至4月份若干天的空氣質(zhì)量情況,并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)統(tǒng)計(jì)圖共統(tǒng)計(jì)了 天的空氣質(zhì)量情況;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;空氣質(zhì)量為“優(yōu)”所在扇形的圓心角度數(shù)是 ;
(3)從小源所在環(huán)保興趣小組4名同學(xué)(2名男同學(xué),2名女同學(xué))中,隨機(jī)選取兩名同學(xué)去該空氣質(zhì)量監(jiān)測(cè)站點(diǎn)參觀,則恰好選到一名男同學(xué)和一名女同學(xué)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng):中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績(jī)x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
請(qǐng)根據(jù)所給信息,解答下列問題:
(1)a=______,b=______;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)這次比賽成績(jī)的中位數(shù)會(huì)落在_____________分?jǐn)?shù)段;
(4)若成績(jī)?cè)?/span>90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績(jī)“優(yōu)”等約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com