【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=1,且經(jīng)過(guò)點(diǎn)(﹣1,0),下列四個(gè)結(jié)論:①如果點(diǎn)(,y1)和(2,y2)都在拋物線上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的實(shí)數(shù));④;其中正確的有( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
【答案】A
【解析】
根據(jù)二次函數(shù)具有對(duì)稱(chēng)性,拋物線y=ax+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=1,可知x=0和x=2時(shí)的函數(shù)值一樣,由圖象可以判斷①;根據(jù)函數(shù)圖象與x軸的交點(diǎn)可判斷②;根據(jù)函數(shù)開(kāi)口向下,可知y=ax+bx+c具有最大值,可判斷③;根據(jù)拋物線y=ax+bc+c(a≠0)的對(duì)稱(chēng)軸為直線x=1且經(jīng)過(guò)(-1,0)點(diǎn),可知y=0時(shí),x=2,從而可以判斷④.
解:拋物線y=ax+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=1,
x=0與x=2時(shí)的函數(shù)值相等,由圖象可知,x=0的函數(shù)值大于x=時(shí)的函數(shù)值.
點(diǎn)(,)和(2,)都在拋物線上,則< (故①正確);
=0時(shí),函數(shù)圖象與x軸兩個(gè)交點(diǎn),
a+bx+c=0時(shí),b-4ac>0(故②正確);
由圖象可知,x=1時(shí),y= ax+bx+c取得最大值,
當(dāng)m≠1時(shí),am+bm+c<a+b+c.即m(am+b)<a+b(m≠1的實(shí)數(shù))(故③正確);
拋物線y=ax+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=1,且經(jīng)過(guò)(-1,0)點(diǎn),
當(dāng)y=0時(shí),x的值為-1或3.
ax+bx+c=0時(shí)的兩根之積為:==-3, (故④正確);
所以A選項(xiàng)是正確的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、C、D重合)。若四邊形OBCD是平行四邊形時(shí),那么的數(shù)量關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10,,點(diǎn)E是點(diǎn)D關(guān)于AB的對(duì)稱(chēng)點(diǎn),M是AB上的一動(dòng)點(diǎn),下列結(jié)論:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結(jié)論中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a+b=1,ab=﹣1,設(shè)S1=a+b,S2=a2+b2,S3=a3+b3,…,Sn=an+bn
(1)計(jì)算S2.
(2)請(qǐng)閱讀下面計(jì)算S3的過(guò)程:
∵a+b=1,ab=﹣1
∴S3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×S2﹣(﹣1)=S2+1= .
你讀懂了嗎?請(qǐng)你先填空完成(2)中S3的計(jì)算結(jié)果,再用你學(xué)到的方法計(jì)算S4
(3)試寫(xiě)出Sn﹣2,Sn﹣1,Sn三者之間的數(shù)量關(guān)系式(不要求證明,且n是不小于2的自然數(shù)),根據(jù)得出的數(shù)量關(guān)系計(jì)算S7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形OABC的兩邊OA、OC分別落在x軸、y軸的正半軸上,頂點(diǎn)B的坐標(biāo)是(6,4),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)矩形對(duì)角線的交點(diǎn)E,且與BC邊交于點(diǎn)D.
(1)①求反比例函數(shù)的解析式與點(diǎn)D的坐標(biāo);②直接寫(xiě)出△ODE的面積;
(2)若P是OA上的動(dòng)點(diǎn),求使得“PD+PE之和最小”時(shí)的直線PE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對(duì)應(yīng)值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結(jié)論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當(dāng)時(shí),y<0;
(3)二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè).
則其中正確結(jié)論的個(gè)數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線、相交于點(diǎn),,半徑為的的圓心在直線上,且與點(diǎn)的距離為.如果以∕的速度,沿由向的方向移動(dòng),那么________秒種后與直線相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,于,平分,于,與相交于點(diǎn),是邊的中點(diǎn),連接與相交于點(diǎn),下列結(jié)論:①;②;③是等腰三角形;④.正確的有( )個(gè).
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com