如圖,矩形ABCD中,AD=5,AB=12,點M在AC上,點N在AB上,則BM+MN的最小值為


  1. A.
    9
  2. B.
    12
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
D
分析:過B點作AC的垂線,使AC兩邊的線段相等,到E點,過E作EF垂直AB交AB于F點,EF就是所求的線段.
解答:解:過B點作AC的垂線,使AC兩邊的線段相等,到E點,過E作EF垂直AB交AB于F點,
AC=13,
AC邊上的高為,所以BE=
∵△ABC∽△BEF,
=,
=
EF=
故選D.
點評:本題考查最短路徑問題,關(guān)鍵確定何時路徑最短,然后運用勾股定理和相似三角形的性質(zhì)求得解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點,DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點,且BE=ED,P是對角線上任意一點,PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習冊答案