【題目】解方程:
(1)3y2+1=2y
(2)(2x+1)2=3(2x+1)
(3)x2﹣4x﹣3=0(用配方法)
【答案】(1)y=;(2)x1=1,x2=﹣;(3)x1=2﹣,x2=2+;
【解析】試題分析:(1)移項(xiàng)后利用完全平方公式分解因式,再利用直接開(kāi)平方法解方程即可;(2)利用因式分解法解方程即可;(3)利用配方法解方程即可.
試題解析:
(1)3y2+1﹣2y=0,
(y﹣1)2=0,
y﹣1=0,
解得y=;
(2)(2x+1)2=3(2x+1)
(2x+1)2﹣3(2x+1)=0,
(2x+1﹣3)(2x+1)=0,
(2x﹣2)(2x+1)=0,
解得x1=1,x2=﹣;
(3)x2﹣4x﹣3=0,
x2﹣4x=3,
(x﹣2)2=7,
x﹣2=±,
解得x1=2﹣,x2=2+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科技公司研發(fā)出一款多型號(hào)的智能手表,一家代理商出售該公司的型智能手表,去年銷售總額為80000元,今年型智能手表的售價(jià)每只比去年降了600元,若今年售出的數(shù)量與去年相同的情況下,今年的銷售總額將比去年減少.
(1)求今年型智能手表每只售價(jià)多少元?
(2)今年這家代理商準(zhǔn)備新進(jìn)一批型智能手表和型智能手表共100只,它們的進(jìn)貨價(jià)與銷售價(jià)格如下表所示,若型智能手表進(jìn)貨量不超過(guò)型智能手表進(jìn)貨量的3倍,所進(jìn)智能手表可全部售完,請(qǐng)你設(shè)計(jì)出進(jìn)貨方案,使這批智能手表獲利最多,并求出最大利潤(rùn)是多少元?
型智能手表 | 型智能手表 | |
進(jìn)價(jià) | 1300元/只 | 1500元/只 |
售價(jià) | 今年的售價(jià) | 2300元/只 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富校園文化,促進(jìn)學(xué)生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學(xué)開(kāi)展“書(shū)法、武術(shù)、黃梅戲進(jìn)校園”活動(dòng)。今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績(jī)?cè)u(píng)定為A,B,C,D,E五個(gè)等級(jí),該校部分學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題.
(1)求該校參加本次“黃梅戲”演唱比賽的學(xué)生人數(shù);
(2)求扇形統(tǒng)計(jì)圖B等級(jí)所對(duì)應(yīng)扇形的圓心角度數(shù);
(3)已知A等級(jí)的4名學(xué)生中有1名男生,3名女生,現(xiàn)從中任意選取2名學(xué)生作為全校訓(xùn)練的示范者,請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法,求出恰好選1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)到畢業(yè)時(shí)共結(jié)余經(jīng)費(fèi)1350元,班委會(huì)決定拿出不少于285元但不超過(guò)300元的資金布置畢業(yè)晚會(huì)會(huì)場(chǎng),其余資金用于在畢業(yè)晚會(huì)上給43位同學(xué)每人購(gòu)買一件紀(jì)念品,紀(jì)念品為文化衫或相冊(cè).已知每件文化衫比每本相冊(cè)貴6元,用202元恰好可以買到3件文化衫和5本相冊(cè).
(1)求每件文化衫和每本相冊(cè)的價(jià)格分別為多少元;
(2)有幾種購(gòu)買文化衫和相冊(cè)的方案?哪種方案可使用于布置畢業(yè)晚會(huì)會(huì)場(chǎng)的資金更充足?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在四邊形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE.求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對(duì)于任意實(shí)數(shù)m,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是1,求m的值及方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線過(guò)點(diǎn),.
(1)求直線的解析式;
(2)若直線與軸交于點(diǎn),且與直線交于點(diǎn).
①求的面積;
②在直線上是否存在點(diǎn),使的面積是面積的2倍,如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件.已知生產(chǎn)一件A種產(chǎn)品需用甲種原料9千克、乙種原料3千克,可獲利潤(rùn)700元;生產(chǎn)一件B種產(chǎn)品需用甲種原料4千克、乙種原料10千克,可獲利潤(rùn)1200元。設(shè)生產(chǎn)A種產(chǎn)品的生產(chǎn)件數(shù)為x, A、B兩種產(chǎn)品所獲總利潤(rùn)為y (元)
(1)試寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(2)求出自變量x的取值范圍;
(3)利用函數(shù)的性質(zhì)說(shuō)明哪種生產(chǎn)方案獲總利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=90°,AC=AB,點(diǎn)D為直線BC上的一動(dòng)點(diǎn),以AD為邊作△ADE(頂點(diǎn)A、D、E按逆時(shí)針?lè)较蚺帕校?/span>,且∠DAE=90°,AD=AE,連接CE.
⑴ 如圖1,若點(diǎn)D在BC邊上(點(diǎn)D與B、C不重合),求∠BCE的度數(shù).
⑵ 如圖2,若點(diǎn)D在CB的延長(zhǎng)線上,若DB=5,BC=7,求△ADE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com