(2008•懷化)不等式3x-5<3+x的正整數(shù)解有( )
A.1個
B.2個
C.3個
D.4個
【答案】分析:先求出不等式的解集,在取值范圍內可以找到正整數(shù)解.
解答:解:解不等式3x-5<3+x的解集為x<4,
所以其正整數(shù)解是1,2,3,共3個.
故選C.
點評:解答此題要先求出不等式的解集,再確定正整數(shù)解.解不等式要用到不等式的性質:
(1)不等式的兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變;
(2)不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變;
(3)不等式的兩邊乘(或除以)同一個負數(shù),不等號的方向改變.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2008•懷化)如圖所示,在平面直角坐標系中,⊙M經過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數(shù)表達式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在⊙M上,開口向下,且經過點B,求此拋物線的函數(shù)表達式;
(3)設(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•懷化)如圖所示,在平面直角坐標系中,⊙M經過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數(shù)表達式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在⊙M上,開口向下,且經過點B,求此拋物線的函數(shù)表達式;
(3)設(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省濟南市歷下區(qū)中考數(shù)學三模試卷(解析版) 題型:解答題

(2008•懷化)如圖所示,在平面直角坐標系中,⊙M經過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數(shù)表達式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在⊙M上,開口向下,且經過點B,求此拋物線的函數(shù)表達式;
(3)設(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省宜昌市枝江市雅畈中學九年級中考數(shù)學強化訓練專題3 二次函數(shù)(解析版) 題型:解答題

(2008•懷化)如圖所示,在平面直角坐標系中,⊙M經過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數(shù)表達式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在⊙M上,開口向下,且經過點B,求此拋物線的函數(shù)表達式;
(3)設(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省湛江市初中畢業(yè)水平模擬考試數(shù)學試卷(解析版) 題型:解答題

(2008•懷化)如圖所示,在平面直角坐標系中,⊙M經過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數(shù)表達式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在⊙M上,開口向下,且經過點B,求此拋物線的函數(shù)表達式;
(3)設(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案