40°
分析:首先根據(jù)三角形內(nèi)角和求出∠ABC+∠ACB的度數(shù),再根據(jù)角平分線的性質(zhì)得到∠IBC=
∠ABC,∠ICB=
∠ACB,求出∠IBC+∠ICB的度數(shù),再次根據(jù)三角形內(nèi)角和求出∠I的度數(shù)即可;
根據(jù)∠ABC+∠ACB的度數(shù),算出∠DBC+∠ECB的度數(shù),然后再利用角平分線的性質(zhì)得到∠1=
∠DBC,∠2=
ECB,可得到∠1+∠2的度數(shù),最后再利用三角形內(nèi)角和定理計算出∠M的度數(shù).
解答:
解:∵∠A=100°,
∵∠ABC+∠ACB=180°-100°=80°,
∵BI、CI分別平分∠ABC,∠ACB,
∴∠IBC=
∠ABC,∠ICB=
∠ACB,
∴∠IBC+∠ICB=
∠ABC+
∠ACB=
(∠ABC+∠ACB)=
×80°=40°,
∴∠BIC=180°-(∠IBC+∠ICB)=180°-40°=140°;
∵∠ABC+∠ACB=80°,
∴∠DBC+∠ECB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-80°=280°,
∵BM、CM分別平分∠ABC,∠ACB的外角平分線,
∴∠1=
∠DBC,∠2=
∠ECB,
∴∠1+∠2=
×280°=140°,
∴∠M=180°-∠1-∠2=40°.
故答案為:40°.
點評:本題考查的是三角形內(nèi)角和定理及角平分線的性質(zhì),解答此題的關(guān)鍵是根據(jù)三角形內(nèi)角和定理計算出∠ABC+∠ACB的度數(shù).