如圖所示,若AB∥CD,則∠E=  

考點:

多邊形內(nèi)角與外角;平行線的性質(zhì)..

分析:

根據(jù)多邊形內(nèi)角和公式可以求出五邊形ABCDE的內(nèi)角和,然后利用平行線的性質(zhì)可以得到∠B的度數(shù),接著就可以求出多邊形的內(nèi)角和.

解答:

解:∵AB∥CD,

∴∠B+∠C=180°,

而∠C=60°,

∴∠B=120°,

而五邊形的內(nèi)角和為(5﹣2)×180°=540°,

∴∠E=540°﹣135°﹣60°﹣120°﹣150°=75°.

故答案為:75°.

點評:

本題考查根據(jù)多邊形的內(nèi)角和計算公式求多邊形的邊數(shù),解答時要會根據(jù)公式進行正確運算、變形和數(shù)據(jù)處理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、家住湖邊的小海,幫爸爸用鐵絲做網(wǎng)箱如圖所示,若AB∥CD,AC∥BD,若∠1=α,則:①∠3=α;②∠2=180°-α;③∠4=α,其中正確的個數(shù)有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖所示,若AB∥CD,∠1=∠2,∠1=55°,則∠3=
70
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖所示,若AB∥CD,則∠E=
75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)小張計劃用長為6米的鋁合金條制成一個矩形窗架(窗架中的橫梁、豎梁皆用鋁合金條制作)如圖所示.若AB的長為x米,窗戶的透光面積為S平方米(鋁合金條所占的面積忽略不計).
(1)請求出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)AB的長為多少米時,小張所設(shè)計窗戶的透光面積最大,并求這個窗戶的最大透光面積.
【參考公式:二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)x=-
b
2a
時,y最大(小)值=
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知動點P以每秒2cm的速度沿如圖所示的邊框按從B→C→D→E→F→A的路徑移動,相應(yīng)的△ABP的面積S關(guān)于時間t的函數(shù)圖象如圖所示,若AB=6cm,則a=
24
24
,b=
17
17

查看答案和解析>>

同步練習(xí)冊答案