作业宝如圖所示,在Rt△ABC中,∠C=90°,點O在AB上,以O(shè)為圓心,OA長為半徑的圓與AC,AB分別交于點D,E,且∠CBD=∠A.判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論.

答:直線BD與⊙O相切.
證明:連接OD,
∵OA=OD
∴∠A=∠ADO
∵∠C=90°,
∴∠CBD+∠CDB=90°
又∵∠CBD=∠A,
∴∠ADO+∠CDB=90°,
∴∠ODB=90°.
∴直線BD與⊙O相切.
分析:首先連接OB,由在Rt△ABC中,∠C=90°,∠CBD=∠A=∠ADO,易得∠ADO+∠CDB=90°,繼而證得直線BD與⊙O相切.
點評:此題考查了切線的性質(zhì)以及直角三角形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于點D,且AB=4,BD=5,則點D到BC的距離是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=55°,則∠DCB=
55
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖所示,在Rt△ABC中,∠C=90°,∠A=30°.作AB的中垂線l分別交AB、AC及BC的延長線于點D、E、F,連接BE. 求證:EF=2DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C為圓心,R為半徑所得的圓與斜邊AB只有一個公共點,則R的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足為E,求證:四邊形CFED是菱形.

查看答案和解析>>

同步練習冊答案