(2010•順義區(qū)二模)已知:如圖,△ABC中,D、E為AC邊的三等分點(diǎn),EF∥AB,交BD的延長(zhǎng)線于F.
求證:點(diǎn)D是BF的中點(diǎn).

【答案】分析:因?yàn)镈、E為AC邊的三等分點(diǎn),所以AD=DE=EC,又因?yàn)镋F∥AB,由內(nèi)錯(cuò)角相等可得∠BAD=∠FED,所以可根據(jù)ASA證明△BAD≌△FED,則有BD=FD,故點(diǎn)D是BF的中點(diǎn)可證.
解答:證明:∵D、E為AC邊的三等分點(diǎn),
∴AD=DE.
∵EF∥AB,
∴∠BAD=∠FED.
在△BAD和△FED中
∠ADB=∠FDE,AD=DE,∠BAD=∠FED,
∴△BAD≌△FED(ASA).
∴BD=FD.
∴點(diǎn)D是BF的中點(diǎn).
點(diǎn)評(píng):本題重點(diǎn)考查了三角形全等的判定定理,普通兩個(gè)三角形全等共有四個(gè)定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,無(wú)法證明三角形全等,本題是一道較為簡(jiǎn)單的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•順義區(qū)二模)在平面直角坐標(biāo)系xOy中,A、B為反比例函數(shù)y=
4
x
(x>0)的圖象上兩點(diǎn),A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)均為1,將y=
4
x
(x>0)的圖象繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,A點(diǎn)的對(duì)應(yīng)點(diǎn)為A′,B點(diǎn)的對(duì)應(yīng)點(diǎn)為B′.
(1)求旋轉(zhuǎn)后的圖象解析式;
(2)求A′、B′點(diǎn)的坐標(biāo);
(3)連接AB′、動(dòng)點(diǎn)M從A點(diǎn)出發(fā)沿線段AB'以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B′運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從B′點(diǎn)出發(fā)沿線段B′A′以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)A′運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,試探究:是否存在使△MNB'為等腰直角三角形的t值,若存在,求出t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市順義區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•順義區(qū)二模)在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c經(jīng)過(guò)A(2,0)、B(4,0)兩點(diǎn),直線交y軸于點(diǎn)C,且過(guò)點(diǎn)D(8,m).
(1)求拋物線的解析式;
(2)在x軸上找一點(diǎn)P,使CP+DP的值最小,求出點(diǎn)P的坐標(biāo);
(3)將拋物線y=x2+bx+c左右平移,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,當(dāng)四邊形A′B′DC的周長(zhǎng)最小時(shí),求拋物線的解析式及此時(shí)四邊形A′B′DC周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市順義區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•順義區(qū)二模)在平面直角坐標(biāo)系xOy中,A、B為反比例函數(shù)(x>0)的圖象上兩點(diǎn),A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)均為1,將(x>0)的圖象繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,A點(diǎn)的對(duì)應(yīng)點(diǎn)為A′,B點(diǎn)的對(duì)應(yīng)點(diǎn)為B′.
(1)求旋轉(zhuǎn)后的圖象解析式;
(2)求A′、B′點(diǎn)的坐標(biāo);
(3)連接AB′、動(dòng)點(diǎn)M從A點(diǎn)出發(fā)沿線段AB'以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B′運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從B′點(diǎn)出發(fā)沿線段B′A′以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)A′運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,試探究:是否存在使△MNB'為等腰直角三角形的t值,若存在,求出t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市順義區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2010•順義區(qū)二模)二次函數(shù)y=x2-2x-4的頂點(diǎn)坐標(biāo)是( )
A.(-1,-3)
B.(-1,-5)
C.(1,-3)
D.(1,-5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市順義區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•順義區(qū)二模)計(jì)算:

查看答案和解析>>

同步練習(xí)冊(cè)答案