(2010•通州區(qū)一模)如圖,平行四邊形ABCD中,以A為圓心,AB為半徑的圓交AD于F,交BC于G,延長BA交圓于E.
(1)若ED與⊙A相切,試判斷GD與⊙A的位置關(guān)系,并證明你的結(jié)論;
(2)在(1)的條件不變的情況下,若GC=CD=5,求AD的長.

【答案】分析:(1)首先得出結(jié)論,然后證明,連接AG,由角的等量關(guān)系可以證出∠1=∠2,然后證明△AED≌△AGD得到∠AGD=90°,
(2)由(1)知AG⊥GD,根據(jù)角間的等量關(guān)系,解出∠6,算出AD.
解答:結(jié)論:GD與⊙O相切,(1分)
證明:連接AG,

∵點(diǎn)G、E在圓上,
∴AG=AE.
∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∴∠B=∠1,∠2=∠3.
∵AB=AG,
∴∠B=∠3.
∴∠1=∠2.(2分)
在△AED和△AGD

∴△AED≌△AGD.
∴∠AED=∠AGD.(3分)
∵ED與⊙A相切,
∴∠AED=90°.
∴∠AGD=90°.
∴AG⊥DG.
∴GD與⊙A相切.(4分)

(2)∵GC=CD=5,四邊形ABCD是平行四邊形,
∴AB=DC,∠4=∠5,AB=AG=5.(5分)
∵AD∥BC,
∴∠4=∠6.
∴∠5=∠6=∠B.
∴∠2=2∠6.
∴∠6=30°.
∴AD=10.(6分)
點(diǎn)評(píng):本題考查了切線的判定,全等三角形判定和平行四邊形的性質(zhì)等知識(shí)點(diǎn).要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年江蘇省南通市通州區(qū)初三年級(jí)模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•通州區(qū)一模)在平面直角坐標(biāo)系中,拋物線y=x2+2x-3與x軸交于A、B兩點(diǎn),(點(diǎn)A在點(diǎn)B左側(cè)).與y軸交于點(diǎn)C,頂點(diǎn)為D,直線CD與x軸交于點(diǎn)E.
(1)請(qǐng)你畫出此拋物線,并求A、B、C、D四點(diǎn)的坐標(biāo);
(2)將直線CD向左平移兩個(gè)單位,與拋物線交于點(diǎn)F(不與A、B兩點(diǎn)重合),請(qǐng)你求出F點(diǎn)坐標(biāo);
(3)在點(diǎn)B、點(diǎn)F之間的拋物線上有一點(diǎn)P,使△PBF的面積最大,求此時(shí)P點(diǎn)坐標(biāo)及△PBF的最大面積;
(4)若平行于x軸的直線與拋物線交于G、H兩點(diǎn),以GH為直徑的圓與x軸相切,求該圓半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省南通市通州區(qū)初三年級(jí)模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•通州區(qū)一模)某商場(chǎng)經(jīng)營一批進(jìn)價(jià)為a元/臺(tái)的小商品,經(jīng)調(diào)查得到下表中的數(shù)據(jù):

(1)請(qǐng)把表中空白處填上適當(dāng)?shù)臄?shù)(日銷售額=銷售價(jià)×日銷售量,日銷售利潤=(銷售價(jià)-進(jìn)價(jià))×日銷售量);
(2)完成(1)后,根據(jù)表格中數(shù)據(jù)發(fā)現(xiàn),表格中的每一對(duì)(x,y)的值滿足一次函數(shù)解析式,請(qǐng)你求出y與x之間的一次函數(shù)解析式;
(3)銷售利潤與銷售價(jià)滿足二次函數(shù)關(guān)系,請(qǐng)你從表格數(shù)據(jù)中觀察,若想獲得最大銷售利潤,銷售價(jià)應(yīng)定在什么范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省南通市通州區(qū)初三年級(jí)模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•通州區(qū)一模)已知二次函數(shù)y=-x2+2bx+b的圖象的頂點(diǎn)在x軸的負(fù)半軸上,求出此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省南通市通州區(qū)初三年級(jí)模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•通州區(qū)一模)已知:如圖,在△ABC中,AB=AC,∠ABC=36°,將△ABC繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)36°后得到△EBF,點(diǎn)A落在點(diǎn)E處,點(diǎn)C落在點(diǎn)F處,連接CF.請(qǐng)你畫出圖形,并按下面要求完成本題.
(1)求證四邊形BCFE是等腰梯形;
(2)求證:AF=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省南通市通州區(qū)初三年級(jí)模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•通州區(qū)一模)計(jì)算:

查看答案和解析>>

同步練習(xí)冊(cè)答案