【題目】在ABCD中,AD=8,AE平分∠BAD交BC于點(diǎn)E,DF平分∠ADC交BC于點(diǎn)F,且EF=2,則AB的長為(
A.3
B.5
C.2或3
D.3或5

【答案】D
【解析】解:①如圖1,在ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,

∴∠DAE=∠AEB,∠ADF=∠DFC,

∵AE平分∠BAD交BC于點(diǎn)E,DF平分∠ADC交BC于點(diǎn)F,

∴∠BAE=∠DAE,∠ADF=∠CDF,

∴∠BAE=∠AEB,∠CFD=∠CDF,

∴AB=BE,CF=CD,

∵EF=2,

∴BC=BE+CF﹣EF=2AB﹣EF=8,

∴AB=5;②在ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,

∴∠DAE=∠AEB,∠ADF=∠DFC,

∵AE平分∠BAD交BC于點(diǎn)E,DF平分∠ADC交BC于點(diǎn)F,

∴∠BAE=∠DAE,∠ADF=∠CDF,

∴∠BAE=∠AEB,∠CFD=∠CDF,

∴AB=BE,CF=CD,

∵EF=2,

∴BC=BE+CF=2AB+EF=8,

∴AB=3;

綜上所述:AB的長為3或5.

故選D.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時,甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用為0.4萬元,乙隊(duì)為0.25萬元,要使這 次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們約定:當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:

①當(dāng)x>2時,M=y2;

②當(dāng)x<0時,x值越大,M值越大;

③使得M大于4的x值不存在;

④若M=2,則x=1.

其中正確的有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某實(shí)驗(yàn)中學(xué)為了進(jìn)一步豐富學(xué)生的課余生活,擬調(diào)整興趣活動小組,為此進(jìn)行了一次調(diào)查,結(jié)果如下,請看表回答:

選項(xiàng)

美術(shù)

電腦

音樂

體育

占調(diào)查人數(shù)的百分率

15%

30%

30%

(1)喜歡體育項(xiàng)目的人數(shù)占總體的百分比是多少?

(2)表示電腦部分的圓心角是多少度?

(3)根據(jù)所給數(shù)據(jù),畫出表示調(diào)查結(jié)果的扇形統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A.同旁內(nèi)角互補(bǔ)

B.在同一平面內(nèi),不相交的兩條直線是平行線

C.在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線平行

D.垂直于同一條直線的兩條直線互相平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園安全”受到全社會的廣泛關(guān)注,某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用了隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為 .

(2)請補(bǔ)全條形統(tǒng)計圖.

(3)若從對校園安全知識達(dá)到“了解”程度的3個女生和2個男生中隨機(jī)抽取2人參加校園安全知識競賽,請用畫樹狀圖或列表的方法求出恰好抽到1個男生和1個女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有三張反面朝上的撲克牌:紅桃2、紅桃3、黑桃x(1≤x≤10且x為奇數(shù)或偶數(shù)).把牌洗勻后第一次抽取一張,記好花色和數(shù)字后將牌放回,重新洗勻第二次再抽取一張.

(1)求兩次抽得相同花色的概率.

(2)當(dāng)甲選擇x為奇數(shù),乙選擇x為偶數(shù)時,他們兩次抽得的數(shù)字和是奇數(shù)的可能性大小一樣嗎?請說明理由.(提示:三張撲克牌可以分別簡記為紅2、紅3、黑x.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級舉辦傳統(tǒng)文化進(jìn)校園朗誦大賽,小明同學(xué)根據(jù)比賽中九位評委所給的某位參賽選手的分?jǐn)?shù),制作了一個表格,如果去掉一個最高分和一個最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是( )

中位數(shù)

眾數(shù)

平均數(shù)

方差

9.2

9.3

9.1

0.3

A. 中位數(shù) B. 眾數(shù) C. 平均數(shù) D. 方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五邊形的內(nèi)角和是_____°

查看答案和解析>>

同步練習(xí)冊答案