【題目】如圖,⊙O的半徑為6cm,經(jīng)過(guò)⊙O上一點(diǎn)C作⊙O的切線交半徑OA的延長(zhǎng)于點(diǎn)B,作∠ACO的平分線交⊙O于點(diǎn)D,交OA于點(diǎn)F,延長(zhǎng)DA交BC于點(diǎn)E.
(1)求證:AC∥OD;
(2)如果DE⊥BC,求弧AC的長(zhǎng)度.
【答案】(1)答案見(jiàn)解析;(2)2π.
【解析】試題分析:(1)由OC=OD,CD平分∠ACO,易證得∠ACD=∠ODC,即可證得AC∥OD;
(2)BC切⊙O于點(diǎn)C,DE⊥BC,易證得平行四邊形ADOC是菱形,繼而可證得△AOC是等邊三角形,則可得:∠AOC=60°,繼而求得弧AC的長(zhǎng)度.
試題解析:(1)證明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;
(2)∵BC切⊙O于點(diǎn)C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四邊形ADOC是平行四邊形.∵OC=OD,∴平行四邊形ADOC是菱形,∴OC=AC=OA,∴△AOC是等邊三角形,∴∠AOC=60°,∴弧AC的長(zhǎng)度==2π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,CF⊥AC交AB的延長(zhǎng)線于點(diǎn)F,G為BC的中點(diǎn),射線AG交CF于D,E在CF上,CE=AD,連接BD,BE.求證:△BDE是等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點(diǎn)M在第二象限,且經(jīng)過(guò)點(diǎn) A(1,0)和點(diǎn) B(0,2).則
(1)a 的取值范圍是________;
(2)若△AMO的面積為△ABO面積的倍時(shí),則a的值為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到△ADE,點(diǎn)C的對(duì)應(yīng)點(diǎn)E恰好落在BA的延長(zhǎng)線上,DE與BC交于點(diǎn)F,連接BD.下列結(jié)論不一定正確的是( )
A. AD=BD B. AC∥BD C. DF=EF D. ∠CBD=∠E
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)有A,B兩種商品,若買2件A商品和1件B商品,共需80元;若買3件A商品和2件B商品,共需135元.
(1)設(shè)A,B兩種商品每件售價(jià)分別為a元、b元,求a、b的值;
(2)B商品每件的成本是20元,根據(jù)市場(chǎng)調(diào)查:若按(1)中求出的單價(jià)銷售,該商場(chǎng)每天銷售B商品100件;若銷售單價(jià)每上漲1元,B商品每天的銷售量就減少5件.
①求每天B商品的銷售利潤(rùn)y(元)與銷售單價(jià)(x)元之間的函數(shù)關(guān)系?
②求銷售單價(jià)為多少元時(shí),B商品每天的銷售利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在下列條件中,不能判斷△ABD≌△BAC的條件是( )
A.AD=BC,BD=ACB.AD=BC,∠BAD=∠ABC
C.BD=AC,∠DBA=∠CABD.AD=BC,∠D=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,轉(zhuǎn)盤被劃分成個(gè)相同的小扇形,并分別標(biāo)上數(shù)字,,,,分別轉(zhuǎn)動(dòng)兩次轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針?biāo)赶虻臄?shù)字作為直角坐標(biāo)系中點(diǎn)的坐標(biāo)(第一次作橫坐標(biāo),第二次作縱坐標(biāo)),指針如果指向分界線上,認(rèn)為指向左側(cè)扇形的數(shù)字,則點(diǎn)落在直線的下方的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com