)對于平面直角坐標系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|叫做P1、P2兩點間的直角距離,記作d(P1,P2).
(1)已知O為坐標原點,動點P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;
(2)設P0(x0,y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離.試求點M(2,1)到直線y=x+2的直角距離.
解:(1)由題意,得|x|+|y|=1。
所有符合條件的點P組成的圖形如圖所示:
(2)∵d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,
又∵x可取一切實數,|x﹣2|+|x+1|表示數軸上實數x所對應的點到數2和﹣1所對應的點的距離之和,其最小值為3。
∴點M(2,1)到直線y=x+2的直角距離為3。
【解析】新定義,一次函數綜合題,絕對值與數軸的關系。
【分析】(1)根據新定義知|x|+|y|=1,據此可以畫出符合題意的圖形。
(2)根據新定義知d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,然后由絕對值與數軸的關系可知,|x﹣2|+|x+1|表示數軸上實數x所對應的點到數2和﹣1所對應的點的距離之和,其最小值為3。
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
2 |
2 |
5 |
10 |
10 |
10 |
10 |
查看答案和解析>>
科目:初中數學 來源: 題型:
1 |
2 |
1 |
2 |
3 |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2013年初中畢業(yè)升學考試(北京卷)數學(解析版) 題型:解答題
對于平面直角坐標系xOy中的點P和⊙C,給出如下定義:若⊙C上存在兩個點A,B,使得∠APB=60°,則稱P為⊙C 的關聯(lián)點。已知點D(,),E(0,-2),F(,0)
(1)當⊙O的半徑為1時,
①在點D,E,F中,⊙O的關聯(lián)點是 ;
②過點F作直線交y軸正半軸于點G,使∠GFO=30°,若直線上的點P(m,n)是⊙O的關聯(lián)點,求m的取值范圍;
(2)若線段EF上的所有點都是某個圓的關聯(lián)點,求這個圓的半徑r的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com