【題目】如圖,在梯形ABCD中,,,,,點EAB邊上一點,且.點FBC邊上的一個動點(與點B、點C不重合),點G在射線CD上,且.設BF的長為xCG的長為y

1)當點G在線段DC上時,求yx之間的函數(shù)關系式,并寫出自變量x的取值范圍;

2)當以點B為圓心,BF長為半徑的⊙B與以點C為圓心,CG長為半徑的⊙C相切時,求線段BF的長;

3)當為等腰三角形時,直接寫出線段BF的長.

【答案】1;(2)當⊙B與⊙C相切時,線段BF的長為:246;(3)當FCG為等腰三角形時,線段BF的長為 2.

【解析】

1)根據(jù)梯形的性質得到∠B=∠C,進行證明∠GFC=∠FEB,得到△EBF∽△FCG,根據(jù)相似三角形的性質得到,即可求出yx之間的函數(shù)關系式.

2)分兩種情況:①當⊙B與⊙C外切時, BFCGBC;②當⊙B與⊙C內切時, CGBFBC進行討論即可.

3)分三種情況進行討論即可.

1)∵梯形ABCD中,ADBC,ABDC

∴∠B=∠C

∵∠EFC=B+∠BEF=EFG+∠GFC,∠EFG=∠B

∴∠GFC=∠FEB

∴△EBF∽△FCG

,∴

自變量x的取值范圍為:

2)當,都有

①當⊙B與⊙C外切時, BFCGBC

,解得x2x12(舍去)

②當⊙B與⊙C內切時, CGBFBC

,解得x4x6

綜上所述,當⊙B與⊙C相切時,線段BF的長為:246

3)當△FCG為等腰三角形時,線段BF的長為: 2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形 ABCD 中,過點 D DEAB 于點 E,點 F CD 上,CF =AE,連接 BF,AF

1)求證:四邊形 BFDE 是矩形;

2)若 AF 平分∠BAD,交DE與H點,且 AB=3AE,BF=6,求AH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形是正方形,點的坐標為,弧是以點為圓心,為半徑的圓;弧是以點為圓心,為半徑的圓弧,弧是以點為圓心,為半徑的圓弧,弧是以點為圓心,為半徑的圓弧.繼續(xù)以點,,,為圓心按上述作法得到的曲線稱為正方形的漸開線,則點的坐標是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內接于O,過點CBC的垂線交OD,點EBC的延長線上,且∠DEC=∠BAC

1)求證:DEO的切線;

2)若ACDE,當AB8,CE2時,求O直徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(59),已知拋物線的頂點D的橫坐標是2.

(1)求拋物線的解析式及頂點坐標;

(2)軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點P,連接PAPB使得△PAB的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,過點A的圓O交邊AB于點E,交邊AD于點F,已知AD=5,AE=2AF=4.如果以點D為圓心,r為半徑的圓D與圓O有兩個公共點,那么r的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC6,BC8,⊙O為△ABC的內切圓,點D是斜邊AB的中點,則tanODA=( 。

A. B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級舉行英語演講比賽,準備用1200元錢(全部用完)購買A,B兩種筆記本作為獎品,已知A,B兩種每本分別為12元和20元,設購入Ax本,By本.

1)求y關于x的函數(shù)表達式.

2)若購進A種的數(shù)量不少于B種的數(shù)量.

①求至少購進A種多少本?

②根據(jù)①的購買,發(fā)現(xiàn)B種太多,在費用不變的情況下把一部分B種調換成另一種C,調換后C種的數(shù)量多于B種的數(shù)量,已知C種每本8元,則調換后C種至少有______本(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線,經(jīng)過點A(-1,-2),B(0,1).

1)求拋物線的關系式及頂點P的坐標.

2)若點B′與點B關于x軸對稱,把(1)中的拋物線向左平移m個單位,平移后的拋物線經(jīng)過點B′,設此時拋物線頂點為點P′.

①求∠P′B B′的大小.

②把線段P′B′以點B′為旋轉中心順時針旋轉120°,點P′落在點M處,設點N在(1)中的拋物線上,當△MN B′的面積等于6時,求點N的坐標.

查看答案和解析>>

同步練習冊答案