[    ]

A.銳角三角形       B.鈍角三角形 

C.直角三角形       D.無法確定

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一斜坡的坡角為α,坡長為100米,那么斜坡的高為
 
(用α的銳角三角比表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)一模)通過學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應(yīng)的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對記作canB,這時canB=
底邊
=
BC
AB
,容易知道一個角的大小與這個角的鄰對值也是一一對應(yīng)的.根據(jù)上述角的鄰對的定義,解下列問題:
(1)can30°=
3
3
;
(2)如圖(2),已知在△ABC中,AB=AC,canB=
8
5
,S△ABC=24,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•寶山區(qū)一模)通過銳角三角比的學(xué)習(xí),我們已經(jīng)知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長比與角的大小之間可以相互轉(zhuǎn)化.類似的我們可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖在△ABC中,AB=AC,
頂角A的正對記作sadA,這時sadA=
底邊
=
BC
AB
.我們?nèi)菀字酪粋角的大小與這個角的正對值也是互相唯一確定的.根據(jù)上述角的正對定義,解下列問題:
(1)sad60°=
1
1
;sad90°=
2
2

(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2

(3)試求sad36°的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•嘉定區(qū)二模)如圖,在Rt△ABC中,∠ACB=90°,點D在AC邊上,且BC2=CD•CA.
(1)求證:∠A=∠CBD;
(2)當∠A=α,BC=2時,求AD的長(用含α的銳角三角比表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圖形分割是令人困惑有趣的.比如將一個正方形分割成若干銳角三角形,要求分割的銳角三角的個數(shù)盡可能少就是讓人感興趣的問題.下圖即是將正方形分割成11個、10個、9個、8個銳角三角形的圖形(如圖 ①~④):其中圖④將正方形分割成8個銳角三角形不僅是一種巧妙的方法,而且圖④還是一個軸對稱圖形,請找一找圖④中全等三角形有( 。
精英家教網(wǎng)
A、3B、4C、5D、6

查看答案和解析>>

同步練習(xí)冊答案