【題目】解不等式2(x﹣1)﹣3<1,并把它的解集在數(shù)軸上表示出來.
【答案】解:去括號(hào)得,2x﹣2﹣3<1, 移項(xiàng)、合并得,2x<6,
系數(shù)化為1得,x<3.
在數(shù)軸上表示如下:
【解析】根據(jù)一元一次不等式的解法,去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可得解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解不等式的解集在數(shù)軸上的表示的相關(guān)知識(shí),掌握不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫數(shù)軸②定界點(diǎn)③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實(shí)心圓點(diǎn),不等于用空心圓圈,以及對一元一次不等式的解法的理解,了解步驟:①去分母;②去括號(hào);③移項(xiàng);④合并同類項(xiàng); ⑤系數(shù)化為1(特別要注意不等號(hào)方向改變的問題).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2013年投入教育經(jīng)費(fèi)2500萬元,2015年投入教育經(jīng)費(fèi)3025萬元.
(1)求2013年至2015年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長率;
(2)根據(jù)(1)所得的年平均增長率,預(yù)計(jì)2016年該地區(qū)將投入教育經(jīng)費(fèi)多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因式分解4a3-a的結(jié)果是( )
A. a(4a2-1) B. a(2a-1)2 C. a(2a+1)(2a-1) D. 4a(a+1)(a-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校共有5個(gè)大餐廳和2個(gè)小餐廳.經(jīng)過測試:同時(shí)開放1個(gè)大餐廳、2個(gè)小餐廳,可供1680名學(xué)生就餐;同時(shí)開放2個(gè)大餐廳、1個(gè)小餐廳,可供2280名學(xué)生就餐.
(1)求1個(gè)大餐廳、1個(gè)小餐廳分別可供多少名學(xué)生就餐;
(2)若7個(gè)餐廳同時(shí)開放,能否供全校的5300名學(xué)生就餐?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=kx+6與拋物線y=+bx+c相交于A,B兩點(diǎn),且點(diǎn)A(1,4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上.
(1)求拋物線的解析式;
(2)在(1)中拋物線的第三象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC與點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接DE.
(1)求證:DE是半圓⊙O的切線.
(2)若∠BAC=30°,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2﹣2x+4化為y=a(x﹣h)2+k的形式,下列正確的是( )
A.y=(x﹣1)2+2
B.y=(x﹣1)2+3
C.y=(x﹣2)2+2
D.y=(x﹣2)2+4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com