已知:△ABC的三邊a=2,b=4,c=3,那么三邊上的高ha:hb:hc=   
【答案】分析:根據(jù)三角形的面積不變,知三角形三邊的高的比和三邊的比成反比.
解答:解:∵三角形三邊的高的比和三邊的比成反比,
∴ha:hb:hc==6:3:4.
點評:解此題的關(guān)鍵是要知道三角形三邊的高的比和三邊的比成反比.同時注意根據(jù)分數(shù)的性質(zhì)進行化簡.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠BCA=90°,CD是高,已知Rt△ABC的三邊長都是整數(shù)且BD=113,求Rt△BCD與Rt△ACD的周長之比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則co精英家教網(wǎng)sA=
AD
b
,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA        (1)
同理可得:b2=a2+c2-2accosB      (2)
c2=a2+b2-2abcosC               (3)
這個結(jié)論就是著名的余弦定理,在以上三個等式中有六個元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個元素,可求出其余的另外三個元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3
3
,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

3、已知,△ABC的三邊分別為a,b,c,則下列條件不能判斷△ABC是直角三角形的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知Rt△ABC的三邊長分別為a,b,c,且a和b滿足
a-3
+b2-4b+4=0

(1)求a、b的長;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知Rt△ABC的三邊長都是整數(shù),而且都不超過1999,其中∠A=90°,BC+AB=2AC,則一共有
399
399
個這樣的△ABC.

查看答案和解析>>

同步練習冊答案