如圖,某人在山坡坡腳處測得一座建筑物頂點的仰角為,沿山坡向上走到處再測得該建筑物頂點的仰角為.已知=,且、、在同一條直線上,山坡坡度為(即).

(1)求該建筑物的高度(即長).

(2)求此人所在位置點的鉛直高度.(測傾器的高度忽略不計,結(jié)果保留根號形式)

⑴解:過點,,

又∵∴四邊形是矩形

∵在中,米,

米答:建筑物的高度為米. ⑵設(shè)米,則

∵在中,

∵在中,

解得:

答:人所在的位置點的鉛直高度為()米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度為
1
2
(即tan∠PAB=
1
2
),且O,A,B在精英家教網(wǎng)同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器的高度忽略不計,結(jié)果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鎮(zhèn)江模擬)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結(jié)果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•營口)如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為60°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為45°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度為
1
2
(即tan∠PCD=
1
2
).
(1)求該建筑物的高度(即AB的長).
(2)求此人所在位置點P的鉛直高度.(測傾器的高度忽略不計,結(jié)果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,該山坡的坡度為
12
,且O,A,B在同一條直線上.
求:(1)電視塔OC的高度;
(2)此人所在位置點P的鉛直高度;
(3)點P到電視塔所在直線OC的距離.(測傾器的高度忽略不計,結(jié)果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇鎮(zhèn)江九年級5月中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某人在山坡坡腳處測得電視塔尖點的仰角為,沿山坡向上走到處再測得點的仰角為,已知米,山坡坡度且O 、A、B在同一條直線上.求電視塔的高度以及此人所在位置點的鉛直高度.(測傾器高度忽略不計,結(jié)果保留根號形式)

 

查看答案和解析>>

同步練習(xí)冊答案