如圖1,在平面直角坐標系中,以坐標原點O為圓心的⊙O的半徑為,直線與坐標軸分別交于A、C兩點,點B的坐標為(4,1),⊙B與x軸相切于點M.
(1)求點A的坐標及∠CAO的度數(shù);
(2)⊙B以每秒1個單位長度的速度沿x軸負方向平移,同時,若直線l繞點A順時針勻速旋轉(zhuǎn),當⊙B第一次與⊙O相切時,直線l也恰好與⊙B第一次相切,見圖(2)求B1的坐標以及直線AC繞點A每秒旋轉(zhuǎn)多少度?
(3)若直線l不動,⊙B沿x軸負方向平移過程中,能否與⊙O與直線l同時相切?若相切,說明理由.

【答案】分析:(1)根據(jù)直線的解析式,易得AC的坐標,進而可得OA、OC的關系,由三角函數(shù)的定義可得∠CAO的大。
(2)設相切時,MN=t,易得ON,MN的值,進而可得∠AB1O=∠NAB1,故PA∥B1O;
易得在Rt△NOB1中,∠1=90°,即可得出答案;
(3)先假設能,且設⊙B與⊙O第二次相切時⊙B的圓心為B2,作B2E⊥AC于E.
易得四邊形B2EHO為平行四邊形,此時⊙B與直線l同時相切.
解答:解:(1)直線
當x=0時,y=-;當y=0,時,x=-
所以A(,0).
∵C(0,),
∴OA=OC,
∵OA⊥OC,
∴∠CAO=45°.

(2)如圖,設⊙B平移t秒到⊙B1處與⊙O第一次相切,
此時,直線l旋轉(zhuǎn)到l1恰好與⊙B1第一次相切于點P,⊙B1與x軸相切于點N,連接B1O,B1N.
則MN=t,OB1=,B1N=1,B1N⊥AN.
∴ON=1,
∴MN=3,即t=3.
連接B1A,B1P,則B1P⊥AP,B1P=B1N,
∴∠PAB1=∠NAB1
∵OA=OB1=
∴∠AB1O=∠NAB1
∴∠PAB1=∠AB1O.
∴PA∥B1O.
在Rt△NOB1中,∠B1ON=45°,
∴∠PAN=45°,
∴∠1=90°.
∴直線AC繞點A平均每秒旋轉(zhuǎn)270°÷3=90°.

(3)能,設⊙B與⊙O第二次相切時⊙B的圓心為B2,作B2E⊥AC于E,作OH⊥AC于H.
∵△OAC為等腰直角三角形,且OA=OC=,
∴根據(jù)勾股定理得到AC=2,
又OH⊥AC,
∴OH為斜邊AC上的中線,
∴OH=AC=1,
∴OH=B2E=1,
∵B2E⊥l,OH⊥l,
∴B2E∥OH,
∵四邊形B2EHO為平行四邊形,
則B2E=OH=1,
故此時⊙B與圓0與直線l同時相切.
點評:本題考查直線與圓的位置關系.要求學生有一定的數(shù)形結(jié)合的能力,即結(jié)合圖形分析,進行代數(shù)計算,得出答案.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
(1)點A的坐標為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源:同步輕松練習 八年級 數(shù)學 上 題型:059

學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應各點.

(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當n=10時,s的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年北京海淀區(qū)九年級第一學期期中測評數(shù)學試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現(xiàn):

如圖1,當點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.

如圖2,當點、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關于點中心對稱.

(1)請在圖2中畫出點、, 小明在證明P、兩點關于點中心對稱時,除了說明P、、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標系xOy中,當、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習冊答案