如圖,△AGB中,以邊AG、AB為邊分別作正方形AEFG、正方形ABCD,線段EB和GD相交于點H, tan∠AGB=,點G、A、C在同一條直線上.

(1)求證:EB⊥GD;

(2)若∠AG=,求BE的長.

 

【答案】

(1)通過角度的轉(zhuǎn)換求得各角的關(guān)系(2)

【解析】

試題分析:證明:正方形AEFG、正方形ACBD

∴∠GAD=∠EAB

..3分

∴∠4=∠3

∵∠4+∠GMA=900,

且∠GMA=∠EMH

∴∠3+∠EMH=900

∴BE⊥DG           ……5分

(2)連接BD交AC于O,則AC⊥BD

設(shè)BO=3x,則GO=4x

∴GA=4x-3x=

∴x=

∴OD=OB=3,OG=4

∴GD=5,BD=6  ……8分

由①得GAD

∴BE=GD=5

考點:全等三角形的性質(zhì)和判定

點評:解答本題的關(guān)鍵是熟練掌握判定兩個三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍灣區(qū)二模)如圖,在Rt△AGB中,∠G=90°,∠A=30°,以GB為邊在GB的下方作正方形GBEH,HE交AB于點F,以AB為邊在AB的上方作正方形ABCD,連接CG,若GB=1,則CG2=
5-2
3
5-2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)活動課上,甲、乙兩位同學(xué)在研究一道數(shù)學(xué)題:“已知:如圖1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.試畫直線m,l,使直線m將△ABC分成的兩個小三角形與直線l將△DEF分成的兩個小三角形分別相似,并標出每個小三角形各內(nèi)角的度數(shù).”
甲同學(xué)是這樣做的:如圖2,使得兩個直角三角形的斜邊重合,以斜邊中點0為圓心,OB長為半徑作出輔助圓,根據(jù)到定點的距離等于定長的點在圓上,可知A、B(E)、C(F)、D在⊙0上.設(shè)BD所在的直線m與AC所在的直線l交于點G,根據(jù)同弧所對的圓周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,從而△AGB∽△DGF.△GBC∽△GEF.
乙同學(xué)在甲同學(xué)的啟發(fā)下,利用輔助圓又補充了其它分割方法.
你看明白甲同學(xué)的分割方法了嗎?請你仿照甲同學(xué)的方法,把這道題其它的所有分割方法補充完整.
要求:不需寫解答過程.如圖2所示.利用輔助圓畫出示意圖,標明直線及每個小三角形各內(nèi)角的度數(shù)即可.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:[名校聯(lián)盟]2013屆重慶市重慶一中九年級下學(xué)期定時作業(yè)數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,△AGB中,以邊AG、AB為邊分別作正方形AEFG、正方形ABCD,線段EB和GD相交于點H, tan∠AGB=,點G、A、C在同一條直線上.

(1)求證:EB⊥GD;
(2)若∠AG=,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△AGB中,以邊AG、AB為邊分別作正方形AEFG、正方形ABCD,線段EB和GD相交于點H,tan∠AGB=數(shù)學(xué)公式,點G、A、C在同一條直線上.
(1)求證:EB⊥GD;
(2)若∠ABE=15°,AG=數(shù)學(xué)公式,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案