如圖,⊙O的直徑AB=10,弦DE⊥AB于點(diǎn)H,AH=2.
(1)求DE的長(zhǎng);
(2)延長(zhǎng)ED到P,過(guò)P作⊙O的切線,切點(diǎn)為C,若PC=2數(shù)學(xué)公式,求PD的長(zhǎng).

解:(1)∵直徑AB=10,弦DE⊥AB于點(diǎn)H,
∴DH=EH,
∴DH•EH=AH•BH=16,
∴DH=4,
∴DE=8;

(2)∵PC切⊙O于點(diǎn)C,
∴PC2=PD•PE,
∵PC=2
∴PD=2,或PD=-10(舍去),
∴PD=2.
分析:(1)根據(jù)垂徑定理和相交弦定理求解;
(2)根據(jù)切割線定理進(jìn)行計(jì)算.
點(diǎn)評(píng):此題主要考查相交弦定理和切割線定理的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點(diǎn),過(guò)點(diǎn)B作BF∥CD交AD的延長(zhǎng)線于
點(diǎn)F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長(zhǎng).(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點(diǎn),連PC,PA,PD,PB,下列結(jié)論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個(gè)數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
92

(1)求OD、OC的長(zhǎng);
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點(diǎn),CD=6cm,則直徑AB的長(zhǎng)是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習(xí)冊(cè)答案