【題目】電影票上“4排5號”,記作(4,5),則“5排4號”記作______
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商人在一次買賣中均以120元賣出兩件衣服,一件賺25%,一件賠25%,在這次交易中,該商人( )
A.賺16元
B.賠16元
C.不賺不賠
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第三屆世界互聯(lián)網(wǎng)大會(3rd World Internet Conference),是由中華人民共和國倡導(dǎo)并舉辦的互聯(lián)網(wǎng)盛會,于2016年11月16日至18日在浙江烏鎮(zhèn)舉辦.某初中學(xué)校為了了解本校學(xué)生對本次互聯(lián)網(wǎng)大會的關(guān)注程度(關(guān)注程度分為:A.特別關(guān)注;B.一般關(guān)注;C.偶爾關(guān)注;D.不關(guān)注),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整)請根據(jù)圖中信息回答問題.
(1)此次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)求出圖2中扇形B所對的圓心角度數(shù),并將圖1補(bǔ)充完整.
(3)在這次調(diào)查中,九(1)班共有甲、乙、丙、丁四人“特別關(guān)注”本屆互聯(lián)網(wǎng)大會,現(xiàn)準(zhǔn)備從四人中隨機(jī)抽取兩人進(jìn)行交流,請用列表法或畫樹狀圖的方法求出抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=x2﹣2向上平移4個單位,再向右平移3個單位,得到新的拋物線,那么新的拋物線的表達(dá)式是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果M個不同的正整數(shù),對其中的任意兩個數(shù),這兩個數(shù)的積能被這兩個數(shù)的和整除,則稱這組數(shù)為M個數(shù)的祖沖之?dāng)?shù)組.如(3,6)為兩個數(shù)的祖沖之?dāng)?shù)組,因?yàn)?×6能被(3+6整除);又如(15,30,60)為三個數(shù)的祖沖之?dāng)?shù)組,因?yàn)椋?5×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…
(1)我們發(fā)現(xiàn),3和6,4和12,5和20,6和30…,都是兩個數(shù)的祖沖之?dāng)?shù)組;由此猜測n和n(n﹣1)(n≥2,n為整數(shù))組成的數(shù)組是兩個數(shù)的祖沖之?dāng)?shù)組,請證明這一猜想.
(2)若(4a,5a,6a)是三個數(shù)的祖沖之?dāng)?shù)組,求滿足條件的所有三位正整數(shù)a.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知, 是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點(diǎn).
(1)求一次函數(shù)、反比例函數(shù)的關(guān)系式;
(2)求△AOB的面積.
(3)當(dāng)自變量x滿足什么條件時,y1>y2 .(直接寫出答案)
(4)將反比例函數(shù)的圖象向右平移n(n>0)個單位,得到的新圖象經(jīng)過點(diǎn)(3,-4),求對應(yīng)的函數(shù)關(guān)系式y3.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是“趙爽弦圖”,其中△ABH、△BCG、△CDF和△DAE是四個全等的直角三角形,四邊形ABC的和EFGH都是正方形.根據(jù)這個圖形的面積關(guān)系,可以證明勾股定理.設(shè)AD=c,AE=b,c=10,a﹣b=2.
(1)正方形EFGH的面積為 , 四個直角三角的面積和為 .
(2)求(a+b)2的值.
(3)a+b= , a= , b= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com