【題目】如圖,在△ABC中,BO、CO分別是∠ABC、∠ACB的角平分線,求:
(1)若∠A=50°,求∠BOC的度數.
(2)在其他條件不變的情況下,若∠A=n°,則∠A與∠BOC之間有怎樣的數量關系?
【答案】(1)115°;(2)∠BOC=90°+∠A.
【解析】
試題分析:(1)根據三角形的內角和得到∠ABC+∠ACB=180°-∠A=130°,由于BO、CO分別是△ABC的角∠ABC、∠ACB的平分線,得到∠OBC=∠ABC,∠OCB=∠ACB,根據三角形的內角和即可得到結論;
(2)根據∠ABC與∠ACB的平分線相交于點O,得到∠OBC=∠ABC,∠OCB=∠ACB,于是得到∠OBC+∠OCB=(∠ABC+∠ACB),根據三角形內角和即可得到結論.
試題解析:(1)∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=130°,
∵BO、CO分別是△ABC的角∠ABC、∠ACB的平分線,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°;
(2)∵∠ABC與∠ACB的平分線相交于點O,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB),
在△OBC中,
∠BOC=180°-(∠OBC+∠OCB)
=180°-(∠ABC+∠ACB)
=180°-(180°-∠A)
=90°+∠A,
即∠BOC=90°+∠A.
考點: 三角形內角和定理.
科目:初中數學 來源: 題型:
【題目】如圖,已知在等腰 Rt△ABC中,∠C=90°,斜邊AB=2,若將△ABC翻折,折痕EF分別交邊AC、邊BC于點E和點F(點E不與A點重合,點F不與B點重合),且點C落在AB邊上,記作點D.過點D作DK⊥AB,交射線AC于點K,設AD=x,y=cot∠CFE,
(1)求證:△DEK∽△DFB;
(2)求y關于x的函數解析式并寫出定義域;
(3)聯結CD,當=時,求x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連結CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①當AE= cm時,四邊形CEDF是矩形;②當AE= cm時,四邊形CEDF是菱形.(直接寫出答案,不需要說明理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年2月19日,經國務院批準,設立無錫市新吳區(qū),將無錫市原新區(qū)的鴻山、旺莊、碩放、梅村、新安街道劃和濱湖區(qū)的江溪街道歸新吳區(qū)管轄.新吳區(qū)現有總人口322819人,這個數據用科學記數法(精確到千位)可表示為( )
A.323×103
B.3.22×105
C.3.23×105
D.0.323×106
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從廣州某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車的行駛路程;
(2)若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com