【題目】已知,如圖,為坐標原點,四邊形為矩形,,點是的中點,點在直線上運動,當是腰長為5的等腰三角形,則點的坐標為_________________________。
【答案】,或
【解析】
分PD=OD(P在右邊),PD=OD(P在左邊),OP=OD(P在y軸右邊),OP=OD(P在y軸左邊)四種情況,根據(jù)題意畫出圖形,作PQ垂直于x軸,找出直角三角形,根據(jù)勾股定理求出OQ,然后根據(jù)圖形寫出P的坐標即可.
解:當OD=PD(P在右邊)時,根據(jù)題意畫出圖形,如圖所示:
過P作PQ⊥x軸交x軸于Q,在直角三角形DPQ中,PQ=4,PD=OD=OA=5,
根據(jù)勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,則P1(8,4);
當PD=OD(P在左邊)時,根據(jù)題意畫出圖形,如圖所示:
過P作PQ⊥x軸交x軸于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,
根據(jù)勾股定理得:QD=3,故OQ=OD-QD=5-3=2,則P2(2,4);
當PO=OD(P在y軸右邊)時,根據(jù)題意畫出圖形,如圖所示:
過P作PQ⊥x軸交x軸于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,
根據(jù)勾股定理得:OQ=3,則P3(3,4),
當PO=OD(P在y軸左邊)時,根據(jù)題意畫出圖形,如圖所示:
過P作PQ⊥x軸交x軸于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,
根據(jù)勾股定理得:OQ=3,則P4(-3,4),
綜上,滿足題意的P坐標為(2,4),(3,4),(8,4)或.
故答案為:(2,4),(3,4),(8,4)或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖已知長方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點E,將△ADE折疊使點D恰好落在BC邊上的點F,則CE的長為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面表格是某次籃球聯(lián)賽部分球隊不完整的積分表:
隊名 | 比賽場數(shù) | 勝場 | 負場 | 積分 |
前進 | 14 | 10 | 4 | 24 |
光明 | 14 | 9 | 5 | 23 |
遠大 | 14 | 22 | ||
衛(wèi)星 | 14 | 4 | 10 | |
鋼鐵 | 14 | 0 | 14 | 14 |
請根據(jù)表格提供的信息:
(1)求出的值;
(2)請直接寫出______,______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在菱形ABCD中,AB=2,∠BAD=60°,過點D作DE⊥AB點E,DF⊥BC于點F.將∠EDF繞點D順時針旋轉(zhuǎn)α°(0<α<180),其兩邊的對應邊DE′、DF′分別與直線AB、BC相交于點G、P,如圖2.連接GP,當△DGP的面積等于3時,則α的大小為( )
A. 30 B. 45 C. 60 D. 120
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(背景知識)數(shù)軸上兩點表示的數(shù)分別為,則兩點之間的距離,線段的中點表示的數(shù)為.
(問題情境)已知數(shù)軸上有兩點,點表示的數(shù)分別為和40,點以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,點以每秒3個單位長度的速度沿數(shù)軸向左勻速運動.設運動時間為秒.
(1)運動開始前,兩點之間的距離為___________,線段的中點所表示的數(shù)為__________;
(2)它們按上述方式運動,兩點經(jīng)過多少秒會相遇?相遇點所表示的數(shù)是多少?
(3)當為多少秒時,線段的中點表示的數(shù)為8?
(情景擴展)已知數(shù)軸上有兩點,點表示的數(shù)分別為和40,若在點之間有一點,點所表示的數(shù)為5,點開始在數(shù)軸上運動,若點以每秒1個單位長度的速度向左勻速運動,同時,點和點分別以每秒5個單位長度和2個單位長度的速度向右運動.
(4)請問:的值是否隨著運動時間的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級同學參加社會實踐活動,到“廬江臺灣農(nóng)民創(chuàng)業(yè)園”了解大棚蔬菜生長情況.他們分兩組對西紅柿的長勢進行觀察測量,分別收集到10株西紅柿的高度,記錄如下(單位:厘米)
第一組:32 39 45 55 60 54 60 28 56 41
第二組:51 56 44 46 40 53 37 47 50 46
根據(jù)以上數(shù)據(jù),回答下列問題:
(1)第一組這10株西紅柿高度的平均數(shù)是 ,中位數(shù)是 ,眾數(shù)是 .
(2)小明同學計算出第一組方差為S12=122.2,請你計算第二組方差,并說明哪一組西紅柿長勢比較整齊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①是一張長為18,寬為12的長方形硬紙板,把它的四個角都剪去一個邊長為的小正方形,然后把它折成一個無蓋的長方體盒子(如圖②),請回答下列問題:
(1)折成的無蓋長方體盒子的容積 ;(用含的代數(shù)式表示即可,不需化簡)
(2)請完成下表,并根據(jù)表格回答,當取什么正整數(shù)時,長方體盒子的容積最大?
1 | 2 | 3 | 4 | 5 | |
160 | ________ | 216 | ________ | 80 |
(3)從正面看折成的長方體盒子,它的形狀可能是正方形嗎?如果是正方形,求出的值;如果不是正方形,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:
設購買白楊樹苗x棵,到兩家林場購買所需費用分別為(元)、(元). 則:
(1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為 元,若都在乙林場購買所需費用為 元;
(2)分別求出、與x之間的函數(shù)關(guān)系式;
(3)如果你是該村的負責人,應該選擇到哪家林場購買樹苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A的坐標為,以線段OA為邊作等邊三角形,使點B落在第四象限內(nèi),點C為x正半軸上一動點,連接BC,以線段BC為邊作等邊三角形,使點D落在第四象限內(nèi).
(1)如圖1,在點C運動的過程巾,連接AD.
①和全等嗎?請說明理由:
②延長DA交y軸于點E,若,求點C的坐標:
(2)如圖2,已知,當點C從點O運動到點M時,點D所走過的路徑的長度為_________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com