【題目】如圖,在四邊形中,是對角線,,,延長的延長線于點.

1)求證:;

2)若,求的值;

3)過點,交的延長線于點,過點,交的延長線于點,連接.設(shè),點是直線上的動點,當(dāng)的值最小時,點與點是否可能重合?若可能,請說明理由并求此時的值(用含的式子表示);若不可能,請說明理由.

【答案】1)見解析;(2;(3)可以重合,理由見解析,的最小值為.

【解析】

1)運用HL證明即可得到結(jié)論;

2)根據(jù)已知條件可證出AB=BE,從而可得∠BAE=45°,再由角平分線的定義可得∠BAC的度數(shù);

3)連接,連接,延長的延長線于點.證明點與點關(guān)于直線成軸對稱,也即點、點、點關(guān)于直線的對稱點,這三點共線,也即的值最小時,點與點重合.再證明為等邊三角形即可得到結(jié)論.

1)證明:

,,

.

.

2

,

.

,

.

.

,

.

由(1)得,

.

.

3)當(dāng)的值最小時,點與點可以重合,理由如下:

,

.

,

.

.

.

由(1)得,,

,

.平分.

,

.

連接,連接,延長的延長線于點.

設(shè),則.

中,.

中,.

,

.

,

.

當(dāng)時,

,

.

.

即點與點關(guān)于直線成軸對稱,也即點、點、點關(guān)于直線的對稱點,這三點共線,也即的值最小時,點與點重合.

因為當(dāng)時,,也即.

所以,當(dāng)時,取最小值時的點與點重合.

此時的最小值即為.

,

.

.

.

,,三點共線.

當(dāng)時,在中,

.

EPA60°.

為等邊三角形

.

.

.

,

.

的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,在下列代數(shù)式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,中,,

從點開始沿邊向的速度移動,點點開始沿邊向點的速度移動.如果、分別從,同時出發(fā),線段能否將分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.

點沿射線方向從點出發(fā)以的速度移動,點沿射線方向從點出發(fā)以的速度移動,、同時出發(fā),問幾秒后,的面積為?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做等高底三角形,這條邊叫做這個三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請說明理由.

(2)問題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關(guān)于BC所在直線的對稱圖形得到A'BC,連結(jié)AA′交直線BC于點D.若點BAA′C的重心,求的值.

(3)應(yīng)用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC倍.將ABC繞點C按順時針方向旋轉(zhuǎn)45°得到A'B'C,A′C所在直線交l2于點D.求CD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,四邊形OACB為長方形,A(﹣6,0),B0,4),直線l為函數(shù)y=﹣2x5的圖象.

1)點C的坐標(biāo)為 ;

2)若點P在直線l上,△APB為等腰直角三角形,∠APB90°,求點P的坐標(biāo);

小明的思考過程如下:

第一步:添加輔助線,如圖②,過點PMNx軸,與y軸交于點N,與AC的延長線交于點M;

第二步:證明△MPA≌△NBP;

第三步:設(shè)NBm,列出關(guān)于m的方程,進而求得點P的坐標(biāo).

請你根據(jù)小明的思考過程,寫出第二步和第三步的完整解答過程;

3)若點P在直線l上,點Q在線段AC上(不與點A重合),△QPB為等腰直角三角形,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CFAD于點G,交BE于點H,下面說法中正確的序號是_____

①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(模型建立)

1)如圖1,等腰直角三角形ABC中,∠ACB90°CBCA,直線ED經(jīng)過點C,過AADED于點D,過BBEED于點E

求證:BEC≌△CDA;

(模型應(yīng)用)

2)① 已知直線l1yx8與坐標(biāo)軸交于點AB,將直線l1繞點A逆時針旋轉(zhuǎn)45至直線l2,如圖2,求直線l2的函數(shù)表達式;

如圖3,長方形ABCO,O為坐標(biāo)原點,點B的坐標(biāo)為(8,-6),點A、C分別在坐標(biāo)軸上,點P是線段BC上的動點,點D是直線y=-3x6上的動點且在y軸的右側(cè).若APD是以點D為直角頂點的等腰直角三角形,請直接寫出點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=60°,OA=OB,動點C從點O出發(fā),沿射線OB方向移動,以AC為邊在右側(cè)作等邊ACD,連接BD,則BD所在直線與OA所在直線的位置關(guān)系是( 。

A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直

查看答案和解析>>

同步練習(xí)冊答案