如圖11,在直角梯形ABCD中,已知ADBCAB=3,AD=1,BC=6,∠A=∠B=90°. 設動點PQ、R在梯形的邊上,始終構(gòu)成以P為直角頂點的等腰直角三角形,且△PQR的一邊與梯形ABCD的兩底平行.

(1) 當點PAB邊上時,在圖中畫出一個符合條件的△PQR (不必說明畫法);

(2) 當點PBC邊或CD邊上時,求BP的長.

 


 (1) 如圖.(注:答案不唯一,在圖中畫出符合條件的圖形即可)······· 2分

(2) ① 當PCD邊上時,

由題意,PRBC,設PR=x.

可證四邊形PRBQ是正方形,∴ PR=PQ=BQ=x.

D點作DEAB,交BCE,易證四邊形ABED是矩形.

AD=BE=1,AB=DE=3.··············· 3分

PQDE,∴△CPQ∽△CDE,.

,·················· 4分

x=,即BP=. ·············· 5分

(注:此時,由于∠C≠45°,因此斜邊RQ不可能平行于BC. 在答題中未考慮此問題者不扣分.)

② 當PBC邊上,依題意可知PQBC.

QQFBC,易證△BRP≌△FQP,則PB=PF.····· 6分

易證四邊形BFQR是矩形,

BP=x,則BP=BR=QF=PF=xBF=RQ=2x.········ 8分

QFDE,∴ △CQF∽△CDE,∴ .············· 8分

,∴ x=.······················ 10分

(注:此時,直角邊不可能與兩底平行. 在答題中未考慮此問題者不扣分.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:浙江省杭州市高橋初中教育集團2012屆九年級下學期期初質(zhì)量檢測數(shù)學試題 題型:013

如圖1,在直角梯形ABCD中,動點P從點B出發(fā),沿BC→CD運動至點D停止.設點P運動的路程為x,△APB的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則△BCD的面積是

[  ]

A.16

B.15

C.11

D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖11,在直角梯形中,,,點為坐標原點,點軸的正半軸上,對角線,相交于點,

(1)線段的長為            ,點的坐標為              ;

(2)求△的面積;

(3)求過,,三點的拋物線的解析式;

(4)若點在(3)的拋物線的對稱軸上,點為該拋物線上的點,且以,,四點為頂點的四邊形為平行四邊形,求點的坐標.

 


 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖11,在直角梯形ABCD中,已知ADBC,AB=3,AD=1,BC=6,∠A=∠B=90°. 設動點P、Q、R在梯形的邊上,始終構(gòu)成以P為直角頂點的等腰直角三角形,且△PQR的一邊與梯形ABCD的兩底平行.

(1) 當點PAB邊上時,在圖中畫出一個符合條件的△PQR (不必說明畫法);

(2) 當點PBC邊或CD邊上時,求BP的長.

 


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在直角梯形ABCD中,動點P從點B出發(fā),沿BC→CD運動至點D停止.設點P運動的路程為,△APB的面積為,如果關(guān)于的函數(shù)圖象如圖2所示,則△BCD的面積是(    )

A.16      B.15     C.11     D.5

查看答案和解析>>

同步練習冊答案