(2009•荊門)一次函數(shù)y=kx+b的圖象與x、y軸分別交于點(diǎn)A(2,0),B(0,4).
(1)求該函數(shù)的解析式;
(2)O為坐標(biāo)原點(diǎn),設(shè)OA、AB的中點(diǎn)分別為C、D,P為OB上一動點(diǎn),求PC+PD的最小值,并求取得最小值時P點(diǎn)的坐標(biāo).

【答案】分析:(1)將點(diǎn)A、B的坐標(biāo)代入y=kx+b并計算得k=-2,b=4.求出解析式為:y=-2x+4;
(2)設(shè)點(diǎn)C關(guān)于點(diǎn)O的對稱點(diǎn)為C′,連接C′D交OB于P,則PC=PC′,PC+PD=PC′+PD=C′D,即PC+PD的最小值是C′D.連接CD,在Rt△DCC′中,由勾股定理求得C′D的值,由OP是△C′CD的中位線而求得點(diǎn)P的坐標(biāo).
解答:解:(1)將點(diǎn)A、B的坐標(biāo)代入y=kx+b得:
0=2k+b,4=b,
∴k=-2,b=4,
∴解析式為:y=-2x+4;

(2)設(shè)點(diǎn)C關(guān)于點(diǎn)O的對稱點(diǎn)為C′,連接C′D交OB于P′,連接P′C,則PC=PC′,
∴PC′+PD=PC′+PD=C′D,即PC+PD的最小值是C′D.
連接CD,在Rt△DCC′中,C′D==2,即PC′+PD的最小值為2,
∵OA、AB的中點(diǎn)分別為C、D,
∴CD是△OBA的中位線,
∴OP∥CD,CD=OB=2,
∵C′O=OC,
∴OP是△C′CD的中位線,
∴OP=CD=1,
∴點(diǎn)P的坐標(biāo)為(0,1).
點(diǎn)評:本題考查的是用待定系數(shù)法求一次函數(shù)的解析式,及兩點(diǎn)之間線段最短的定理,本題難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•荊門)一開口向上的拋物線與x軸交于A(m-2,0),B(m+2,0)兩點(diǎn),記拋物線頂點(diǎn)為C,且AC⊥BC.
(1)若m為常數(shù),求拋物線的解析式;
(2)若m為小于0的常數(shù),那么(1)中的拋物線經(jīng)過怎么樣的平移可以使頂點(diǎn)在坐標(biāo)原點(diǎn);
(3)設(shè)拋物線交y軸正半軸于D點(diǎn),問是否存在實數(shù)m,使得△BOD為等腰三角形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省楚雄州雙柏縣中考數(shù)學(xué)模擬試卷(安龍堡中學(xué) 蘇洪波)(解析版) 題型:解答題

(2009•荊門)一開口向上的拋物線與x軸交于A(m-2,0),B(m+2,0)兩點(diǎn),記拋物線頂點(diǎn)為C,且AC⊥BC.
(1)若m為常數(shù),求拋物線的解析式;
(2)若m為小于0的常數(shù),那么(1)中的拋物線經(jīng)過怎么樣的平移可以使頂點(diǎn)在坐標(biāo)原點(diǎn);
(3)設(shè)拋物線交y軸正半軸于D點(diǎn),問是否存在實數(shù)m,使得△BOD為等腰三角形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省荊門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•荊門)一開口向上的拋物線與x軸交于A(m-2,0),B(m+2,0)兩點(diǎn),記拋物線頂點(diǎn)為C,且AC⊥BC.
(1)若m為常數(shù),求拋物線的解析式;
(2)若m為小于0的常數(shù),那么(1)中的拋物線經(jīng)過怎么樣的平移可以使頂點(diǎn)在坐標(biāo)原點(diǎn);
(3)設(shè)拋物線交y軸正半軸于D點(diǎn),問是否存在實數(shù)m,使得△BOD為等腰三角形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省荊州市江陵縣五三中學(xué)中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:填空題

(2009•荊門)從分別標(biāo)有1、2、3、4的四張卡片中,一次同時抽2張,其中和為奇數(shù)的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《概率》(05)(解析版) 題型:解答題

(2009•荊門)某校學(xué)生會干部對校學(xué)生會倡導(dǎo)的“助殘”自愿捐款活動進(jìn)行抽樣調(diào)查,得到一組學(xué)生捐款情況的數(shù)據(jù),下圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計圖,圖中從左到右各長方形高度之比為3:4:5:8:2,又知此次調(diào)查中捐15元和20元的人數(shù)共39人.
(1)他們一共抽查了多少人捐款數(shù)不少于20元的概率是多少?
(2)這組數(shù)據(jù)的眾數(shù)、中位數(shù)各是多少?
(3)若該校共有2310名學(xué)生,請估算全校學(xué)生共捐款多少元?

查看答案和解析>>

同步練習(xí)冊答案