【題目】已知△ABC中∠ACB=90°,E在AB上,以AE為直徑的⊙O與BC相切于D,與AC相交于F,連接AD.
(1)求證:AD平分∠BAC;
(2)連接OC,如果∠B=30°,CF=1,求OC的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)連接OD,由 OD=OA,可得∠1=∠2,再由BC為⊙O的切線,根據(jù)切線的性質(zhì)可得∠ODB=90°,已知∠C=90°,所以∠ODB=∠C,即可判定OD∥AC,根據(jù)平行線的性質(zhì)可得∠3=∠2,所以∠1=∠3,即可判定AD是∠BAC的平分線;(2)連接DF,已知∠B=30°,可求得∠BAC=60°,再由AD是∠BAC的平分線,可得∠3=30°,已知BC是⊙O的切線,根據(jù)弦切角定理可得∠FDC=∠3=30°,所以CD= CF=,同理可得AC=CD=3,所以AF=2,過(guò)O作OG⊥AF于G,由垂徑定理可得GF=AF=1,四邊形ODCG是矩形,所以CG=2,OG=CD=,由勾股定理可得OC=.
試題解析:
(1)證明:連接OD,∴OD=OA,∴∠1=∠2,
∵BC為⊙O的切線,∴∠ODB=90°,∵∠C=90°,∴∠ODB=∠C,∴OD∥AC,
∴∠3=∠2,∴∠1=∠3,∴AD是∠BAC的平分線;
(2)解:連接DF,∵∠B=30°,∴∠BAC=60°,
∵AD是∠BAC的平分線,∴∠3=30°,∵BC是⊙O的切線,∴∠FDC=∠3=30°,
∴CD=CF=,∴AC=CD=3,∴AF=2,
過(guò)O作OG⊥AF于G,∴GF=AF=1,四邊形ODCG是矩形,
∴CG=2,OG=CD=,∴OC==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八邊形的內(nèi)角和為_____;一個(gè)多邊形的每個(gè)內(nèi)角都是120°,則它是____邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接第二屆“環(huán)泉州灣國(guó)際自行車賽”的到來(lái),泉州臺(tái)商投資區(qū)需要制作宣傳單.有兩個(gè)印刷廠前來(lái)聯(lián)系制作業(yè)務(wù),甲廠的優(yōu)惠條件是:按每份定價(jià)1.5元的八折收費(fèi),另收900元制版費(fèi);乙廠的優(yōu)惠條件是:每份定價(jià)1.5元的價(jià)格不變,而制版費(fèi)900元?jiǎng)t六折優(yōu)惠.且甲乙兩廠都規(guī)定:一次印刷數(shù)量至少是500份.
(1)若印刷數(shù)量為份(,且是整數(shù)),請(qǐng)你分別寫出兩個(gè)印刷廠收費(fèi)的代數(shù)式;
(2)如果比賽宣傳單需要印刷1100份,應(yīng)選擇哪個(gè)廠家?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測(cè)得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測(cè)得∠DEB=60°,求C、D兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌專賣店對(duì)上個(gè)月銷售的男運(yùn)動(dòng)鞋尺碼統(tǒng)計(jì)如下:
碼號(hào)(碼) | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
銷售量(雙) | 6 | 8 | 14 | 20 | 17 | 3 | 1 |
這組統(tǒng)計(jì)數(shù)據(jù)中的眾數(shù)是碼.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P為BC上任意一點(diǎn)(可與點(diǎn)B或C重合),分別過(guò)B、C、D作射線AP的垂線,垂足分別是B′、C′、D′,則BB′+CC′+DD′的最小值是( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點(diǎn)D,E,AE=2,CE= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com