如圖所示,在平面直角坐標(biāo)系xOy中,正方形PABC的邊長為1,將其沿x軸的正方向連續(xù)滾動,即先以頂點(diǎn)A為旋轉(zhuǎn)中心將正方形PABC順時針旋轉(zhuǎn)90°得到第二個正方形,再以頂點(diǎn)D為旋轉(zhuǎn)中心將第二個正方形順時針旋轉(zhuǎn)90°得到第三個正方形,依此方法繼續(xù)滾動下去得到第四個正方形,…,第n個正方形.設(shè)滾動過程中的點(diǎn)P的坐標(biāo)為(x,y).

(1)畫出第三個和第四個正方形的位置,并直接寫出第三個正方形中的點(diǎn)P的坐標(biāo);
(2)畫出點(diǎn)P(x,y)運(yùn)動的曲線(0≤x≤4),并直接寫出該曲線與x軸所圍成區(qū)域的面積.
【答案】分析:(1)有意義直接畫圖,再有畫的圖形可直接寫出點(diǎn)P的坐標(biāo);
(2)有點(diǎn)P運(yùn)動的軌跡可知為弧線,只要找到所在的圓心和半徑即可,利用扇形的面積公式即可求出該曲線與x軸所圍成區(qū)域的面積.
解答:解:(1)第三個和第四個正方形的位置如圖所示:

第三個正方形中的點(diǎn)P的坐標(biāo)為:(3,1);

(2)點(diǎn)P(x,y)運(yùn)動的曲線(0≤x≤4)如圖所示:

由圖形可知它與x軸所圍成區(qū)域的面積=++1+=π+1.
點(diǎn)評:本題考查了圖形旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等和扇形的面積公式:,題目難度不大,不過很新穎.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網(wǎng)交于點(diǎn)A,過點(diǎn)A分別作x軸、y軸的垂線,垂足為點(diǎn)B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(2,0).月牙①繞點(diǎn)B順時針旋轉(zhuǎn)90°得到月牙②,則點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系中,一顆棋子從點(diǎn)P處開始依次關(guān)于點(diǎn)A,B,C作循環(huán)對稱跳動,即第一次從點(diǎn)P跳到關(guān)于點(diǎn)A的對稱點(diǎn)M處,第二次從點(diǎn)M跳到關(guān)于點(diǎn)B的對稱點(diǎn)N處,第三次從點(diǎn)N跳到關(guān)于點(diǎn)C的對稱點(diǎn)處,…如此下去.
(1)在圖中標(biāo)出點(diǎn)M,N的位置,并分別寫出點(diǎn)M,N的坐標(biāo):
 

(2)請你依次連接M、N和第三次跳后的點(diǎn),組成一個封閉的圖形,并計算這個圖形的面積;
(3)猜想一下,經(jīng)過第2009次跳動之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系xoy中,有一組對角線長分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點(diǎn)重合),依上述排列方式,對角線長為n的第n個正方形的頂點(diǎn)An的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過A(-1,0)、B(3,0)兩點(diǎn),拋物線與y軸交點(diǎn)為C,其頂點(diǎn)為D,連接BD,點(diǎn)P是線段BD上一個動點(diǎn)(不與B、D重合),過點(diǎn)P作y軸的垂線,垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)如果P點(diǎn)的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當(dāng)s取得最大值時,過點(diǎn)P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點(diǎn)P的對應(yīng)點(diǎn)為P',請直接寫出P'點(diǎn)坐標(biāo),并判斷點(diǎn)P'是否在該拋物線上.

查看答案和解析>>

同步練習(xí)冊答案