(2010•西城區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+3的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)C的坐標(biāo)為(3,0),連接BC.
(1)求證:△ABC是等邊三角形;
(2)點(diǎn)P在線段BC的延長(zhǎng)線上,連接AP,作AP的垂直平分線,垂足為點(diǎn)D,并與y軸交于點(diǎn)E,分別連接EA、EP.
①若CP=6,直接寫出∠AEP的度數(shù);
②若點(diǎn)P在線段BC的延長(zhǎng)線上運(yùn)動(dòng)(P不與點(diǎn)C重合),∠AEP的度數(shù)是否變化?若變化,請(qǐng)說(shuō)明理由;若不變,求出∠AEP的度數(shù);
(3)在(2)的條件下,若點(diǎn)P從C點(diǎn)出發(fā)在BC的延長(zhǎng)線上勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度.EC與AP交于點(diǎn)F,設(shè)△AEF的面積為S1,△CFP的面積為S2,y=S1-S2,運(yùn)動(dòng)時(shí)間為t(t>0)秒時(shí),求y關(guān)于t的函數(shù)關(guān)系式.

【答案】分析:(1)由一次函數(shù)y=x+3求出A、B兩點(diǎn),再根據(jù)兩點(diǎn)間坐標(biāo)公式求得AB=BC=AC,則可證△ABC為等邊三角形.
(2)①因?yàn)椤鰽BC為等邊三角形,CP=AC,DE是AP的中垂線,故C、D、E三點(diǎn)共線,進(jìn)而求出四邊形AEPC是菱形,可以求解;
②連接EC,由于E在y軸上,即E在AC的垂直平分線上,所以EA=EC,故∠ECA=∠EAC,而E在AP的垂直平分線上,同理可求得EA=EP,即EC=EP=EA,那么∠ECP=∠EPC;由(1)知∠ACP=∠ECA+∠ECP=120°,那么∠EAC、∠EPC的度數(shù)和也是120°,由此可求得∠AEP=360°-240°=120°,即∠AEP的度數(shù)不變.
(3)由于S1、S2的面積無(wú)法直接求出,因此可求(S1-S2)這個(gè)整體的值,將其適當(dāng)變形可得(S1+S△ACF)-(S2+S△ACF),即S1-S2的值可由△ACE和△ACP的面積差求得,過(guò)E作EM⊥PC于M,由(2)知△ECP是等腰三角形,則CM=PM=,在Rt△BEM中,∠EBM=30°,BM=6+,通過(guò)解直角三角形即可求得BE的長(zhǎng),從而可得到OE的長(zhǎng),到此,可根據(jù)三角形的面積公式表示出△ACE和△ACP的面積,從而求得S1-S2的表達(dá)式,由此得解.
解答:解:(1)由一次函數(shù)y=x+3,
則A(-3,0),B(0,3),C(3,0).
再由兩點(diǎn)間距離公式可得出:AB=BC=AC=6,
∴△ABC為等邊三角形.

(2)①,連接CD,由題意得,C、D、E三點(diǎn)共線,
∵E點(diǎn)在y軸上,且A、C關(guān)于y軸對(duì)稱,
∴E點(diǎn)在線段AC的垂直平分線上,
即EA=EC;
∵E點(diǎn)在線段AP的垂直平分線上,則EA=EP,
∴EA=EP=EC,
∴∠EAC=∠ECA,∠ECP=∠EPC;
∵∠BCA=60°,即∠ACP=∠ECA+∠ECP=120°,
∴∠EAC+∠EPC=120°,即∠EAC+∠EPC+∠ACP=240°,
∴∠AEP=120°.

②連接EC,
∵E點(diǎn)在y軸上,且A、C關(guān)于y軸對(duì)稱,
∴E點(diǎn)在線段AC的垂直平分線上,
即EA=EC;
∵E點(diǎn)在線段AP的垂直平分線上,則EA=EP,
∴EA=EP=EC,
∴∠EAC=∠ECA,∠ECP=∠EPC;
∵∠BCA=60°,即∠ACP=∠ECA+∠ECP=120°,
∴∠EAC+∠EPC=120°,即∠EAC+∠EPC+∠ACP=240°,
故∠AEP=360°-240°=120°,
∴∠AEP的度數(shù)不會(huì)發(fā)生變化,仍為120°.

(3)如圖,過(guò)E作EM⊥BP于M、過(guò)A作AN⊥BP于N;
由(2)知:△CEP是等腰三角形,則有:
CM=MP=CP=;
∴BM=BC+CM=6+;
在Rt△BEM中,∠MBE=30°,則有:BE=BM=(6+);
∴OE=BE-OB=(6+)-3=+t;
故S△AEC=AC•OE=×6×(+t)=3+t,
S△ACP=PC•AN=×t×3=t;
∵S△AEC=S1+S,S△ACP=S+S2,
∴S△AEC-S△ACP=S1+S-(S2+S)=S1-S2
=3+t-t=3-t,
即y=3-t.
點(diǎn)評(píng):此題主要考查了一次函數(shù)與三角形的相關(guān)知識(shí),涉及到:等邊三角形、等腰三角形的判定和性質(zhì),三角形面積的求法,解直角三角形等重要知識(shí)點(diǎn),此題的難點(diǎn)在于第(3)問(wèn),由于S1、S2的面積無(wú)法直接求出,能夠用△AEC、△ACP的面積差來(lái)表示S1-S2的值是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市西城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實(shí)數(shù)量,方程總有實(shí)數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對(duì)稱;
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市西城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)如圖,將直線y=4x沿y軸向下平移后,得到的直線與x軸交于點(diǎn),與雙曲線交于點(diǎn)B.
(1)求直線AB的解析式;
(2)若點(diǎn)B的縱坐標(biāo)為m,求k的值(用含有m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市文瀾中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+3的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)C的坐標(biāo)為(3,0),連接BC.
(1)求證:△ABC是等邊三角形;
(2)點(diǎn)P在線段BC的延長(zhǎng)線上,連接AP,作AP的垂直平分線,垂足為點(diǎn)D,并與y軸交于點(diǎn)E,分別連接EA、EP.
①若CP=6,直接寫出∠AEP的度數(shù);
②若點(diǎn)P在線段BC的延長(zhǎng)線上運(yùn)動(dòng)(P不與點(diǎn)C重合),∠AEP的度數(shù)是否變化?若變化,請(qǐng)說(shuō)明理由;若不變,求出∠AEP的度數(shù);
(3)在(2)的條件下,若點(diǎn)P從C點(diǎn)出發(fā)在BC的延長(zhǎng)線上勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度.EC與AP交于點(diǎn)F,設(shè)△AEF的面積為S1,△CFP的面積為S2,y=S1-S2,運(yùn)動(dòng)時(shí)間為t(t>0)秒時(shí),求y關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市西城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)已知:如圖,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4,
求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案