如圖,C為線段AB上一點,P是線段AC的中點,Q是線段CB的中點,若PQ=2.8cm,求AB的長.
解:∵P是AB的中點
PC=
1
2
AC
AC

∵Q是CB的中點
CQ=
1
2
BC
BC

PC+CQ=
1
2
(AC+BC)
(AC+BC)

∵PC+CQ=
PQ
PQ
,AC+CB=
AB
AB

PQ=
1
2
AB
AB

∵PQ=2.8cm
∴AB=
5.6cm
5.6cm
分析:根據(jù)中點的性質(zhì)可得出AC=2PC,BC=2CQ,根據(jù)圖象即可得出AB的長度.
解答:解:∵P是AB的中點,
PC=
1
2
AC,
∵Q是CB的中點
CQ=
1
2
BC
PC+CQ=
1
2
(AC+BC)
∵PC+CQ=PQ,AC+CB=AB
PQ=
1
2
AB
∵PQ=2.8cm
∴AB=5.6cm.
故答案分別是:AC,BC,(AC+BC),PQ,AB,AB,5.6cm.
點評:本題主要考查了利用中點性質(zhì)轉(zhuǎn)化線段之間的倍分關(guān)系,長度帶單位的一定注意不要漏掉長度的單位,比較簡單.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,C為線段AB上一點,以BC為直徑作⊙O,再以AO為直徑作⊙M交⊙O于D、B作AB的垂線交AD的延長線于F,連接CD.若AC=2,且AC與AD的長是關(guān)于x的方程x2-2(1+
5
)
x+k=0的兩個根.
①求證:AD是⊙O的切線;
②求線段DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,C為線段AB上的一點,△ACM、△CBN都是等邊三角形,若AC=3,BC=2,則△MCD與△BND的面積比為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,C為線段AB上的一點,△ACM、△CBN都是等邊三角形,BM與CN交于D點.若AC=3,BC=2,則CD=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,P為線段AB上一點,AD與BC交干E,∠CPD=∠A=∠B,BC交PD于E,AD交PC于G,則圖中
相似三角形有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•順義區(qū)二模)已知:如圖,D為線段AB上一點(不與點A、B重合),CD⊥AB,且CD=AB,AE⊥AB,BF⊥AB,且AE=BD,BF=AD.
(1)如圖1,當點D恰是AB的中點時,請你猜想并證明∠ACE與∠BCF的數(shù)量關(guān)系;
(2)如圖2,當點D不是AB的中點時,你在(1)中所得的結(jié)論是否發(fā)生變化,寫出你的猜想并證明;
(3)若∠ACB=α,直接寫出∠ECF的度數(shù)(用含α的式子表示).

查看答案和解析>>

同步練習冊答案