(2009•自貢)如圖,把矩形紙片ABCD沿EF折疊,使點(diǎn)B落在AD邊上的點(diǎn)B′處,點(diǎn)A落在A′處.
(1)求證:B′E=BF;
(2)設(shè)AE=a,AB=b,BF=c,試猜想a、b、c之間有何等量關(guān)系,并給予說(shuō)明.
分析:(1)首先根據(jù)題意得B′F=BF,∠B′FE=∠BFE,接著根據(jù)平行線的性質(zhì)和等腰三角形的判定即可證明B′E=BF;
(2)解答此類(lèi)題目時(shí)要仔細(xì)讀題,根據(jù)三角形三邊關(guān)系求解分類(lèi)討論解答,要提高全等三角形的判定結(jié)合勾股定理解答.
解答:(1)證明:由題意得B′F=BF,∠B′FE=∠BFE,
∵在矩形ABCD中,AD∥BC,
∴∠B′EF=∠BFE,
∴∠B′FE=∠B'EF,
∴B′F=B′E,
∴B′E=BF;

(2)a,b,c三者關(guān)系不唯一,有兩種可能情況:
(ⅰ)a,b,c三者存在的關(guān)系是a2+b2=c2
證明:連接BE,則BE=B′E,
∵由(1)知B′E=BF=c,
∴BE=c.
在△ABE中,∠A=90°,
∴AE2+AB2=BE2,
∵AE=a,AB=b,
∴a2+b2=c2;

(ⅱ)a,b,c三者存在的關(guān)系是a+b>c.
證明:連接BE,則BE=B′E.
∵由(1)知B′E=BF=c,
∴BE=c,
∵在△ABE中,AE+AB>BE,
∴a+b>c.
點(diǎn)評(píng):此題主要考查了矩形的翻折、等角對(duì)等邊、三角形全等、勾股定理等知識(shí),尋找?guī)缀卧刂g的對(duì)應(yīng)關(guān)系,形成較為常規(guī)的方法解決問(wèn)題,利用等角對(duì)等邊、翻折等知識(shí)來(lái)證明是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•自貢)如圖是由幾個(gè)相同的小正方體搭成幾何體的三視圖,則搭成這個(gè)幾何體的小正方體的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•自貢)如圖,△ABC是等邊三角形,D是BC邊上一點(diǎn),△ABD經(jīng)過(guò)旋轉(zhuǎn)后到達(dá)△ACE的位置.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)的最小角度是多少度?
(3)若M是AB的中點(diǎn),那么經(jīng)過(guò)上述旋轉(zhuǎn)后,點(diǎn)M轉(zhuǎn)到了什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•自貢)如圖,小華用手電測(cè)量學(xué)校食堂的高度,在P處放一水平的平面鏡,光線從A出發(fā),經(jīng)平面鏡反射后剛剛射到食堂頂部C處,已知AB⊥BD,CD⊥BD,且AB=1.2m,BP=1.8m,PD=12m,那么食堂的高度是
8m
8m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•自貢)如圖,⊙O與△ABC中AB、AC的延長(zhǎng)線及BC邊相切,且∠ACB=90°,∠A,∠B,∠C所對(duì)的邊長(zhǎng)依次為3,4,5,則⊙O的半徑是
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案