已知二次函數(shù)與一次函數(shù)的圖象交于,則能使成立的的取值范圍是
A.B.
C.D.
D

試題分析:二次函數(shù)與一次函數(shù)的圖象交于,,那么從圖象上來看就是二次函數(shù)的圖象要比一次函數(shù)的圖象高,在本題的圖象中即是A點的左邊和B點的右邊部分,的取值范圍為
點評:本題考查一次函數(shù)和二次函數(shù)的圖象;要求考生熟練掌握其性質(zhì),會通過觀察圖象求解不等式的解
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標系x O y中,二次函數(shù)的圖像與x軸、y軸的公共點分別為A(5,0)、B,點C在這個二次函數(shù)的圖像上,且橫坐標為3.

(1)求這個二次函數(shù)的解析式;
(2)求∠BAC的正切值;
(3)如果點D在這個二次函數(shù)的圖像上,且∠DAC = 45°,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線軸交于兩點,與軸交于點.

(1)請求出拋物線頂點的坐標(用含的代數(shù)式表示),兩點的坐標;
(2)經(jīng)探究可知,的面積比不變,試求出這個比值;
(3)是否存在使為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某企業(yè)投資100萬元引進一條農(nóng)產(chǎn)品加工線,若不計維修、保養(yǎng)費用,預(yù)計投產(chǎn)后每年可獲利33萬元,該生產(chǎn)線投資后,從第1年到第年的維修、保養(yǎng)費用累計為(萬元),且,若第1年的維修、保養(yǎng)費用為2萬元,第2年為4萬元。
(1)求之間的關(guān)系式;
(2)投產(chǎn)后,這個企業(yè)在第幾年就能收回投資?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請寫出一個二次函數(shù),使它同時具有如下性質(zhì):
①圖象關(guān)于直線對稱;②當x=2時,y>0;③當x=-2時,y<0.
答:           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬朵)與時間x(x為整數(shù),單位:天)部分對應(yīng)值如下表所示.
時間x(天)
0
4
8
12
16
20
銷量y1(萬朵)
0
16
24
24
16
0
另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬朵)與時間x(x為整數(shù),單位:天) 關(guān)系如下圖所示.

(1)請你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)觀察馬蹄蓮網(wǎng)上銷售量y2與時間x的變化規(guī)律,請你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫出銷售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)設(shè)該花木公司日銷售總量為y萬朵,寫出y與時間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在函數(shù)中,我們規(guī)定:當自變量增加一個單位時,因變量的增加量稱為函數(shù)的平均變化率.例如,對于函數(shù)y=3x+1,當自變量x增加1時,因變量y=3(x+1)+1=3x+4,較之前增加3,故函數(shù)y=3x+1的平均變化率為3.

(1)①列車已行駛的路程s(km)與行駛的時間t(h)的函數(shù)關(guān)系式是s=300t,該函數(shù)的平均變化率是      ;其蘊含的實際意義是       ;
②飛機著陸后滑行的距離y(m)與滑行的時間x(s)的函數(shù)關(guān)系式是y=-1.5x2+60x,求該函數(shù)的平均變化率;
(2)通過比較(1)中不同函數(shù)的平均變化率,你有什么發(fā)現(xiàn);
(3)如圖,二次函數(shù)y=ax2+bx+c的圖像經(jīng)過第一象限內(nèi)的三點A、B、C,過點A、B、C作x軸的垂線,垂足分別為D、E、F,AM⊥BE,垂足為M,BN⊥CF,垂足為N,DE=EF,試探究△AMB與△BNC面積的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

,拋物線x軸于點Q、M,交y軸于點P,點P關(guān)于x軸的對稱點為N。

(1)求點M、N的坐標,并判斷四邊形NMPQ的形狀;
(2)如圖,坐標系中有一正方形ABCD,其中AB=2cm且CD⊥x軸,CD的中點E與Q點重合,正方形ABCD以1cm/s的速度沿射線QM運動,當正方形ABCD完全進入四邊形QPMN時立即停止運動.
①當正方形ABCD與四邊形NMPQ的交點個數(shù)為2時,求兩四邊形重疊部分的面積y與運動時間t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
②求運動幾秒時,重疊部分的面積為正方形ABCD面積
的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是二次函數(shù)圖象的一部分,其對稱軸為,若其與x軸一交點為A(3,0),則有圖象可知不等式的解集是____________.

查看答案和解析>>

同步練習(xí)冊答案