【題目】如圖,P為∠AOB內(nèi)一定點,M,N分別是射線OA,OB上一點,當△PMN周長最小時,∠OPM=50°,則∠AOB=___________.
【答案】40°
【解析】
作P關于OA,OB的對稱點P1,P2.連接OP1,OP2.則當M,N是P1P2與OA,OB的交點時,△PMN的周長最短,根據(jù)對稱的性質可以證得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根據(jù)等腰三角形的性質即可求解.
如圖:作P關于OA,OB的對稱點P1,P2.連接OP1,OP2.則當M,N是P1P2與OA、OB的交點時,△PMN的周長最短,連接P1O、P2O,
∵PP1關于OA對稱,
∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°
同理,∠P2OP=2∠NOP,OP=OP2,
∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,
∴△P1OP2是等腰三角形.
∴∠OP2N=∠OP1M=50°,
∴∠P1OP2=180°-2×50°=80°,
∴∠AOB=40°,
故答案為:40°
科目:初中數(shù)學 來源: 題型:
【題目】問題探究:
(1)已知:如圖1,在正方形ABCD中,點E、H分別在BC、AB上,若AE⊥DH于點O,求證AE=DH;
類比探究:
(2)如圖2,在正方形ABCD中,點H,E,G,F(xiàn)分別在AB,BC,CD,DA上,若EF⊥HG于點O,探究線段EF與HG的數(shù)量關系,并說明理由;
拓展應用:
(3)已知,如圖3,在(2)問條件下,若BC=4,E為BC的中點,AF= AD,求HG的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】你認為月球上有水嗎?如圖是對某中學八年級的140名男生的調查結果.
(1)認為“有水”的頻數(shù)為________,認為“沒有水”的頻數(shù)是_______,認為“不知道”的頻數(shù)是_______;
(2)認為“有水”的頻率為_______,認為“沒有水”的頻率是______,認為“不知道”的頻率是_______,頻率之和為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=14,BC=8,點E為邊BC上一點,且BE=5,將紙片沿過點E的一條直線l翻折,使點B落在直線CD上,若l與矩形的邊的另一個交點為F,則EF的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣4,0.5),B(﹣1,2)是一次函數(shù)y=ax+b與反比例函數(shù) (m<0)圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當x取何值時,一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點,連接PC,PD,若△PCA和△PDB面積相等,求點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(0,5),直線x=-5與x軸交于點D,直線y=-x-與x軸及直線x=-5分別交于點C,E.點B,E關于x軸對稱,連接AB.
(1)求點C,E的坐標及直線AB的解析式;
(2)若S=S△CDE+S四邊形ABDO,求S的值;
(3)在求(2)中S時,嘉琪有個想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉化為直接求△AOC的面積,如此不更快捷嗎?”但大家經(jīng)反復驗算,發(fā)現(xiàn)S△AOC≠S,請通過計算解釋他的想法錯在哪里.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某同學在課下設計的一款軟件,藍精靈從點O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到達A2n后,要向________方向跳________個單位長度落到A2n+1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com