【題目】如圖,在RtABC中,∠ABC90,C0,﹣2),AC3AD,點(diǎn)A在反比例函數(shù)y上,且y軸平分∠ACB,若則k_____

【答案】

【解析】

x軸的垂線,構(gòu)造相似三角形,利用CD3ADC0,﹣2)可以求出A的縱坐標(biāo),再利用三角形相似,設(shè)未知數(shù),由相似三角形對應(yīng)邊成比例,列出方程,求出待定未知數(shù),從而確定點(diǎn)A的坐標(biāo),進(jìn)而確定k的值.

AAEx軸,垂足為E,

C0,﹣2),

OC2,

AC3AD

∵∠AED=∠COD90°,∠ADE=∠CDO

∴△ADE∽△CDO

AE1;

又∵y軸平分∠ACB,COBD,

BOOD,

∵∠ABC90°,

∴∠OCD=∠DAE=∠ABE,

∴△ABECOD,

設(shè)DEn,則BOOD2n,BE5n,

n=

OE3n,

A,1

k×1

故答案:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請僅用無刻度的直尺完成下列畫圖,不寫畫法,保留畫圖痕跡.(用虛線表示畫圖過程,實(shí)線表示畫圖結(jié)果)

   

1)如圖①,四邊形 ABCD 中,AB=AD,∠B=D,畫出四邊形 ABCD 的對稱軸 m;

2)如圖②,四邊形 ABCD 中,ADBC,∠A=D,畫出 BC 邊的垂直平分線 n

3)如圖③,ABC 的外接圓的圓心是點(diǎn) O,D 的中點(diǎn),畫一條直線把ABC 分成面積相等的兩部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的20166月份的日歷表中,任意框出表中豎列上三個(gè)相鄰的數(shù),這三個(gè)數(shù)的和不可能是(   )

A. 27 B. 51 C. 69 D. 72

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂場新推出了一個(gè)極速飛車的項(xiàng)目.項(xiàng)目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項(xiàng)目難度.其中斜坡軌道BC的坡度(或坡比)為i12,BC12米,CD8米,∠D36°,(其中點(diǎn)AB、C、D均在同一平面內(nèi))則垂直升降電梯AB的高度約為( 。┟祝ň_到0.1米,參考數(shù)據(jù):tan36°≈0.73,cos36°≈0.81sin36°≈0.59

A.5.6B.6.9C.11.4D.13.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,點(diǎn)EAD邊上一點(diǎn),連接CE,交對角線BD于點(diǎn)F,過點(diǎn)AAB的垂線交BD的延長線于點(diǎn)G,過BBH垂直于CE,垂足為點(diǎn)H,交CD于點(diǎn)P,21+290°

1)若PH2,BH4,求PC的長;

2)若BCFC,求證:GFPC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖①,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向勻速平移得到△PNM,速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速移動,速度為1cm/s,當(dāng)△PNM停止平移時(shí),點(diǎn)Q也停止移動,如圖②,設(shè)移動時(shí)間為t(s)(0<t<4),連接PQ,MQ,MC,解答下列問題:

(1)當(dāng)t為何值時(shí),PQ∥MN?

(2)設(shè)△QMC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;

(3)是否存在某一時(shí)刻t,使S△QMC:S四邊形ABQP=1:4?若存在,求出t的值;若不存在,請說明理由.

(4)是否存在某一時(shí)刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,AC為直徑,MAMB分別切⊙O于點(diǎn)A,B,∠BAC25°,則∠AMB的大小為( 。

A. 25°B. 30°C. 45°D. 50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為改善生態(tài)環(huán)境,建設(shè)美麗鄉(xiāng)村,某村規(guī)劃將一塊長18米,寬10米的矩形場地建設(shè)成綠化廣場,如圖,內(nèi)部修建三條寬相等的小路,其中一條路與廣場的長平行,另兩條路與廣場的寬平行,其余區(qū)域種植綠化,使綠化區(qū)域的面積為廣場總面積的80%.

1)求該廣場綠化區(qū)域的面積;

2)求廣場中間小路的寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ABC=∠DCB,添加以下條件,不能判定△ABC≌△DCB的是( 。

A.A=∠DB.ACB=∠DBCC.ACDBD.ABDC

查看答案和解析>>

同步練習(xí)冊答案