如圖,AC⊥BC,AD=BD,BC=3,AC=4,則CD=
5
2
5
2
分析:先利用勾股定理求出AB的長,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)解答.
解答:解:∵AC⊥BC,BC=3,AC=4,
∴AB=
BC2+AC2
=
32+42
=5,
∵AD=BD,
∴CD是斜邊AB上的中線,
∴CD=
1
2
AB=
1
2
×5=
5
2

故答案為:
5
2
點評:本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理的應(yīng)用,熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分別是E,F(xiàn),那么,CE=DF嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,AC=BC,AD=BD,下列結(jié)論中不正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AC⊥BC,DE是AB的垂直平分線,∠CAE=30°,則∠B=
30
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AC⊥BC,AD=BD,為了使圖中的△BCD是等邊三角形,再增加一個條件可以是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖:AC⊥BC,CD⊥AB,則點B到AC的距離是線段
BC
BC
的長.

查看答案和解析>>

同步練習(xí)冊答案