已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.
(1)求證:BE=DF;
(2)連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM,F(xiàn)M,判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.

【答案】分析:(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;
(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結(jié)論,可證得EC=CF,根據(jù)等腰三角形三線合一的性質(zhì)可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相垂直平分,根據(jù)對角線互相垂直且平分的四邊形是菱形,即可判定四邊形AEMF是菱形.
解答:(1)證明:∵四邊形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL)
∴BE=DF;(4分)

(2)解:四邊形AEMF是菱形,理由為:
證明:∵四邊形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的對角線平分一組對角),BC=DC(正方形四條邊相等),
∵BE=DF(已證),
∴BC-BE=DC-DF(等式的性質(zhì)),即CE=CF,
在△COE和△COF中,
,
∴△COE≌△COF(SAS),
∴OE=OF,又OM=OA,
∴四邊形AEMF是平行四邊形(對角線互相平分的四邊形是平行四邊形),
∵AE=AF,
∴平行四邊形AEMF是菱形.(8分)
點評:此題主要考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì)及菱形的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD中,E是CB延長線上一點,EB=
12
BC,如果F是AB的中點,請你在正方形ABCD上找一點,與F點連接成線段,并說明它和AE相等的理由.
解:連接
 
,則
 
=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=
5
.下列結(jié)論:
①△APD≌△AEB;
②點B到直線AE的距離為
2
;
③EB⊥ED;
④S△APD+S△APB=1+
6
;
⑤S正方形ABCD=4+
6
.其中正確結(jié)論的序號是( 。
A、①③④B、①②⑤
C、③④⑤D、①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD中,P是BC上的點,且BP=3PC,Q是CD的中點.△ADQ與△QCP是否相似?
為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在正方形ABCD中,AB=8,點E在邊AB上點,CE的垂直平分線FP 分別交AD精英家教網(wǎng)、CE、CB于點F、H、G,交AB的延長線于點P.
(1)求證:△EBC∽△EHP;
(2)設(shè)BE=x,BP=y,求y與x之間的函數(shù)解析式,并寫出定義域;
(3)當(dāng)BG=
74
時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在正方形ABCD中,E、F分別是AD、CD的中點.
(1)線段AF與BE有何關(guān)系.說明理由;
(2)延長AF、BC交于點H,則B、D、G、H這四個點是否在同一個圓上.說明理由.

查看答案和解析>>

同步練習(xí)冊答案