(2004•豐臺區(qū))如圖,ABCD為圓內(nèi)接四邊形,若∠A=60°,則∠C等于( )

A.30°
B.60°
C.120°
D.300°
【答案】分析:∠A、∠C是圓內(nèi)接四邊形的內(nèi)對角,根據(jù)圓內(nèi)接四邊形的對角互補,可求出∠C的度數(shù).
解答:解:∵四邊形ABCD內(nèi)接于⊙O,
∴∠A+∠C=180°,
∴∠C=180°-∠A=120°.
故選C.
點評:本題考查了圓內(nèi)接四邊形的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(01)(解析版) 題型:選擇題

(2004•豐臺區(qū))在直角坐標系中,點P(1,-1)一定在( )
A.拋物線y=x2
B.雙曲線y=
C.直線y=x上
D.直線y=-x上

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2004•豐臺區(qū))在直角坐標系中,點P(1,-1)一定在( )
A.拋物線y=x2
B.雙曲線y=
C.直線y=x上
D.直線y=-x上

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2004•豐臺區(qū))已知:把矩形AOBC放入直角坐標系xOy中,使OB、OA分別落在x軸、y軸上,點A的坐標為(0,2),連接AB,∠OAB=60°,將△ABC沿AB翻折,使C點落在該坐標平面內(nèi)的D點處,AD交x軸于點E.
(1)求D點坐標;
(2)求經(jīng)過點A、D的直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2004•豐臺區(qū))在直角坐標系中,點P(1,-1)一定在( )
A.拋物線y=x2
B.雙曲線y=
C.直線y=x上
D.直線y=-x上

查看答案和解析>>

科目:初中數(shù)學 來源:2004年北京市豐臺區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2004•豐臺區(qū))已知:把矩形AOBC放入直角坐標系xOy中,使OB、OA分別落在x軸、y軸上,點A的坐標為(0,2),連接AB,∠OAB=60°,將△ABC沿AB翻折,使C點落在該坐標平面內(nèi)的D點處,AD交x軸于點E.
(1)求D點坐標;
(2)求經(jīng)過點A、D的直線的解析式.

查看答案和解析>>

同步練習冊答案