(2007•襄陽(yáng))如圖,直線l1∥l2∥l3,另兩條直線分別交l1、l2、l3于點(diǎn)A、B、C及點(diǎn)D、E、F,且AB=3,DE=4,EF=2,則( )

A.BC:DE=1:2
B.BC:DE=2:3
C.BC•DE=8
D.BC•DE=6
【答案】分析:易知直線l1∥l2∥l3,根據(jù)平行線分線段成比例定理對(duì)各選項(xiàng)分析即可.
解答:解:∵l1∥l2∥l3
∵AB=3,DE=4,EF=2
∴BC•DE=AB•EF=6.故選D.
點(diǎn)評(píng):本題考查平行線分線段成比例定理的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•襄陽(yáng))如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開(kāi)始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過(guò)A、P1、Q1三點(diǎn)的拋物線解析式及對(duì)稱(chēng)軸l;
(2)當(dāng)t為何值時(shí),直線PQ與⊙C相切并寫(xiě)出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對(duì)稱(chēng)軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年遼寧省大連市第55中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2007•襄陽(yáng))如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開(kāi)始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過(guò)A、P1、Q1三點(diǎn)的拋物線解析式及對(duì)稱(chēng)軸l;
(2)當(dāng)t為何值時(shí),直線PQ與⊙C相切并寫(xiě)出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對(duì)稱(chēng)軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省蘇州市吳江市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2007•襄陽(yáng))如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開(kāi)始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過(guò)A、P1、Q1三點(diǎn)的拋物線解析式及對(duì)稱(chēng)軸l;
(2)當(dāng)t為何值時(shí),直線PQ與⊙C相切并寫(xiě)出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對(duì)稱(chēng)軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省南通市通州區(qū)通西片一模試卷(解析版) 題型:解答題

(2007•襄陽(yáng))如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開(kāi)始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過(guò)A、P1、Q1三點(diǎn)的拋物線解析式及對(duì)稱(chēng)軸l;
(2)當(dāng)t為何值時(shí),直線PQ與⊙C相切并寫(xiě)出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對(duì)稱(chēng)軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年湖北省襄樊市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2007•襄陽(yáng))如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開(kāi)始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過(guò)A、P1、Q1三點(diǎn)的拋物線解析式及對(duì)稱(chēng)軸l;
(2)當(dāng)t為何值時(shí),直線PQ與⊙C相切并寫(xiě)出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對(duì)稱(chēng)軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案