已知Rt△ABC的兩條直角邊的長(zhǎng)分別為5cm和12cm,則它斜邊上的高長(zhǎng)為_(kāi)_____cm.
如圖,AC=5cm,BC=12cm,AB=13cm,CD為斜邊AB上的高
∵S△ABC=
1
2
AC•BC=
1
2
CD•AB,
1
2
×5×12=
1
2
×13•CD,
∴CD=
60
13
cm.
故答案為:
60
13

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

以0.3、0.4、0.5為邊長(zhǎng)的三角形是直角三角形,所以0.3、0.4、0.5是勾股數(shù)______(判斷對(duì)錯(cuò))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,將一根21cm的筷子,置于底面直徑為8cm,高15cm的圓柱形水杯中,則筷子露在杯子外面的最短長(zhǎng)度是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一只螞蟻從長(zhǎng)寬都是3,高是8的長(zhǎng)方體紙箱的A點(diǎn)沿紙箱爬到B點(diǎn),那么它所行的最短路線(xiàn)的長(zhǎng)是(  )
A.(3
2
+8)cm
B.10cmC.14cmD.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用x,y表示直角三角形的兩直角邊(x>y),下列四個(gè)說(shuō)法:①x2+y2=49,②x-y=2,③2xy+4=49,④x+y=9.其中說(shuō)法正確的結(jié)論有______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,長(zhǎng)為8cm的橡皮筋放置在x軸上,固定兩端A和B,然后把中點(diǎn)C向上拉升3cm至D點(diǎn),則橡皮筋被拉長(zhǎng)了( 。
A.2cmB.3cmC.4cmD.5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

問(wèn)題背景:在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為
5
、
10
、
13
,求此三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你將△ABC的面積直接填寫(xiě)在橫線(xiàn)上:______.
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長(zhǎng)分別
5
a、
8
a、
17
a(a>0),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫(huà)出相應(yīng)的△ABC,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一架梯子斜靠在墻上,已知梯子長(zhǎng)為2.5米,測(cè)得墻與梯子底端相距0.7米,那么此時(shí)墻高為( 。
A.0.8米B.3.2米C.2.4米D.3米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖是2002年8月在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),它是由4個(gè)相同的直角三角形拼和而成.若圖中大小正方形的面積分別為52cm2和4cm2,則直角三角形的兩條直角邊的和是______cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案